suryagpt-ft
This model is a fine-tuned version of TheBloke/Mistral-7B-Instruct-v0.2-GPTQ on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7170
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.9479 | 0.9412 | 8 | 2.9026 |
2.0922 | 2.0 | 17 | 1.5301 |
1.4095 | 2.9412 | 25 | 1.1705 |
1.0244 | 4.0 | 34 | 1.0004 |
1.0198 | 4.9412 | 42 | 0.9060 |
0.8214 | 6.0 | 51 | 0.8174 |
0.8465 | 6.9412 | 59 | 0.7645 |
0.7057 | 8.0 | 68 | 0.7328 |
0.7711 | 8.9412 | 76 | 0.7200 |
0.5994 | 9.4118 | 80 | 0.7170 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.3
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.20.3
- Downloads last month
- 39
Model tree for Surya1502/suryagpt-ft
Base model
mistralai/Mistral-7B-Instruct-v0.2
Quantized
TheBloke/Mistral-7B-Instruct-v0.2-GPTQ