SubhasishSaha
commited on
Push to Hub
Browse files- DQN-CartPole-v1.zip +2 -2
- DQN-CartPole-v1/data +20 -20
- DQN-CartPole-v1/policy.optimizer.pth +1 -1
- DQN-CartPole-v1/policy.pth +1 -1
- DQN-CartPole-v1/system_info.txt +1 -1
- README.md +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
DQN-CartPole-v1.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b9c013149abdf231e071b697052b7491d81949800ddb8f34c9f71f6040aa917
|
3 |
+
size 1108151
|
DQN-CartPole-v1/data
CHANGED
@@ -5,15 +5,15 @@
|
|
5 |
"__module__": "stable_baselines3.dqn.policies",
|
6 |
"__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}",
|
7 |
"__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
8 |
-
"__init__": "<function DQNPolicy.__init__ at
|
9 |
-
"_build": "<function DQNPolicy._build at
|
10 |
-
"make_q_net": "<function DQNPolicy.make_q_net at
|
11 |
-
"forward": "<function DQNPolicy.forward at
|
12 |
-
"_predict": "<function DQNPolicy._predict at
|
13 |
-
"_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at
|
14 |
-
"set_training_mode": "<function DQNPolicy.set_training_mode at
|
15 |
"__abstractmethods__": "frozenset()",
|
16 |
-
"_abc_impl": "<_abc._abc_data object at
|
17 |
},
|
18 |
"verbose": 1,
|
19 |
"policy_kwargs": {
|
@@ -30,12 +30,12 @@
|
|
30 |
"_num_timesteps_at_start": 0,
|
31 |
"seed": null,
|
32 |
"action_noise": null,
|
33 |
-
"start_time":
|
34 |
"learning_rate": 0.0001,
|
35 |
"tensorboard_log": null,
|
36 |
"_last_obs": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
-
":serialized:": "
|
39 |
},
|
40 |
"_last_episode_starts": {
|
41 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -43,16 +43,16 @@
|
|
43 |
},
|
44 |
"_last_original_obs": {
|
45 |
":type:": "<class 'numpy.ndarray'>",
|
46 |
-
":serialized:": "
|
47 |
},
|
48 |
-
"_episode_num":
|
49 |
"use_sde": false,
|
50 |
"sde_sample_freq": -1,
|
51 |
"_current_progress_remaining": 0.0,
|
52 |
"_stats_window_size": 100,
|
53 |
"ep_info_buffer": {
|
54 |
":type:": "<class 'collections.deque'>",
|
55 |
-
":serialized:": "
|
56 |
},
|
57 |
"ep_success_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
@@ -76,7 +76,7 @@
|
|
76 |
},
|
77 |
"action_space": {
|
78 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
79 |
-
":serialized:": "
|
80 |
"n": "2",
|
81 |
"start": "0",
|
82 |
"_shape": [],
|
@@ -96,13 +96,13 @@
|
|
96 |
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
97 |
"__module__": "stable_baselines3.common.buffers",
|
98 |
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
99 |
-
"__init__": "<function ReplayBuffer.__init__ at
|
100 |
-
"add": "<function ReplayBuffer.add at
|
101 |
-
"sample": "<function ReplayBuffer.sample at
|
102 |
-
"_get_samples": "<function ReplayBuffer._get_samples at
|
103 |
-
"_maybe_cast_dtype": "<staticmethod object at
|
104 |
"__abstractmethods__": "frozenset()",
|
105 |
-
"_abc_impl": "<_abc._abc_data object at
|
106 |
},
|
107 |
"replay_buffer_kwargs": {},
|
108 |
"train_freq": {
|
|
|
5 |
"__module__": "stable_baselines3.dqn.policies",
|
6 |
"__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}",
|
7 |
"__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
8 |
+
"__init__": "<function DQNPolicy.__init__ at 0x3237bb5e0>",
|
9 |
+
"_build": "<function DQNPolicy._build at 0x3237bb670>",
|
10 |
+
"make_q_net": "<function DQNPolicy.make_q_net at 0x3237bb700>",
|
11 |
+
"forward": "<function DQNPolicy.forward at 0x3237bb790>",
|
12 |
+
"_predict": "<function DQNPolicy._predict at 0x3237bb820>",
|
13 |
+
"_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x3237bb8b0>",
|
14 |
+
"set_training_mode": "<function DQNPolicy.set_training_mode at 0x3237bb940>",
|
15 |
"__abstractmethods__": "frozenset()",
|
16 |
+
"_abc_impl": "<_abc._abc_data object at 0x3237bfcc0>"
|
17 |
},
|
18 |
"verbose": 1,
|
19 |
"policy_kwargs": {
|
|
|
30 |
"_num_timesteps_at_start": 0,
|
31 |
"seed": null,
|
32 |
"action_noise": null,
|
33 |
+
"start_time": 1713087975250453000,
|
34 |
"learning_rate": 0.0001,
|
35 |
"tensorboard_log": null,
|
36 |
"_last_obs": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVhQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAD5zEr0qVn28mzeyPAriZryUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLBIaUjAFDlHSUUpQu"
|
39 |
},
|
40 |
"_last_episode_starts": {
|
41 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
43 |
},
|
44 |
"_last_original_obs": {
|
45 |
":type:": "<class 'numpy.ndarray'>",
|
46 |
+
":serialized:": "gAWVhQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAOs3Ab2JZVe+92uFPGH8iz6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLBIaUjAFDlHSUUpQu"
|
47 |
},
|
48 |
+
"_episode_num": 3870,
|
49 |
"use_sde": false,
|
50 |
"sde_sample_freq": -1,
|
51 |
"_current_progress_remaining": 0.0,
|
52 |
"_stats_window_size": 100,
|
53 |
"ep_info_buffer": {
|
54 |
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV+wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCQAAAAAAACMAWyUSwqMAXSUR0A3SBrN4Z/DdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0A3SZbpu/DcdX2UKGgGR0BsgAAAAAAAaAdL5GgIR0A3b6/qPfbcdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0A3cj7ALy+YdX2UKGgGR0BigAAAAAAAaAdLlGgIR0A3jMQmNR3vdX2UKGgGR0BmAAAAAAAAaAdLsGgIR0A3qvi97F85dX2UKGgGR0BaQAAAAAAAaAdLaWgIR0A3vQqI7/4qdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0A3v1uzhP0qdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0A3wLXtjTa1dX2UKGgGR0AiAAAAAAAAaAdLCWgIR0A3wlzltCRfdX2UKGgGR0AgAAAAAAAAaAdLCGgIR0A3w6+nIhhZdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0A3xRLsa86FdX2UKGgGR0BlwAAAAAAAaAdLrmgIR0A34vpyIYWMdX2UKGgGR0Bh4AAAAAAAaAdLj2gIR0A3+9ETg2qDdX2UKGgGR0BtAAAAAAAAaAdL6GgIR0A4J5vLowEhdX2UKGgGR0BvoAAAAAAAaAdL/WgIR0A4YiV0Lc9GdX2UKGgGR0BiIAAAAAAAaAdLkWgIR0A4fd/rjYI0dX2UKGgGR0BxwAAAAAAAaAdNHAFoCEdAOLHyup0fYHV9lChoBkdAVAAAAAAAAGgHS1BoCEdAOL+6mO2iL3V9lChoBkdAbaAAAAAAAGgHS+1oCEdAOOmyHEdeY3V9lChoBkdAb2AAAAAAAGgHS/toCEdAORSbUgB91HV9lChoBkdAYeAAAAAAAGgHS49oCEdAOS3iWE9MbnV9lChoBkdAbsAAAAAAAGgHS/ZoCEdAOVmB4D9wWHV9lChoBkdAcjAAAAAAAGgHTSMBaAhHQDmLYmLLpzN1fZQoaAZHQHIQAAAAAABoB00hAWgIR0A5vRzRx95RdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAOiNtdiUgS3V9lChoBkdAbqAAAAAAAGgHS/VoCEdAOlHQ6ZH/cXV9lChoBkdAZmAAAAAAAGgHS7NoCEdAOnETHsC1Z3V9lChoBkdAaIAAAAAAAGgHS8RoCEdAOpOC04R283V9lChoBkdAcjAAAAAAAGgHTSMBaAhHQDrGXXyy2QZ1fZQoaAZHQGygAAAAAABoB0vlaAhHQDruLehwl0J1fZQoaAZHQGGAAAAAAABoB0uMaAhHQDsGjafzz3B1fZQoaAZHQGmAAAAAAABoB0vMaAhHQDsof0VafSR1fZQoaAZHQHEAAAAAAABoB00QAWgIR0A7aEVWS2YwdX2UKGgGR0BtwAAAAAAAaAdL7mgIR0A7lpMYdhiLdX2UKGgGR0BwwAAAAAAAaAdNDAFoCEdAO8X225QP7XV9lChoBkdAaYAAAAAAAGgHS8xoCEdAO+/BJqZc9nV9lChoBkdAYsAAAAAAAGgHS5ZoCEdAPApu63AmA3V9lChoBkdAaEAAAAAAAGgHS8JoCEdAPCx/Aj6eoXV9lChoBkdAbkAAAAAAAGgHS/JoCEdAPFqQNkOI7HV9lChoBkdAcPAAAAAAAGgHTQ8BaAhHQDyKMERradt1fZQoaAZHQGCgAAAAAABoB0uFaAhHQDyhHlOoHcF1fZQoaAZHQHDwAAAAAABoB00PAWgIR0A80iIcinpCdX2UKGgGR0BxAAAAAAAAaAdNEAFoCEdAPQklAu7HyXV9lChoBkdAcUAAAAAAAGgHTRQBaAhHQD1AZiuuA7R1fZQoaAZHQG3AAAAAAABoB0vuaAhHQD1p+CsfaHt1fZQoaAZHQGbAAAAAAABoB0u2aAhHQD2L4Kx9oex1fZQoaAZHQGTAAAAAAABoB0umaAhHQD2n7P6be/J1fZQoaAZHQGCgAAAAAABoB0uFaAhHQD290MgEEDB1fZQoaAZHQD0AAAAAAABoB0sdaAhHQD3EC4jKPn11fZQoaAZHQGuAAAAAAABoB0vcaAhHQD3o5WBBiTd1fZQoaAZHQGVgAAAAAABoB0uraAhHQD4GHuZ1FH91fZQoaAZHQG6AAAAAAABoB0v0aAhHQD4xiz9jwx51fZQoaAZHQGngAAAAAABoB0vPaAhHQD5Z9Brvb491fZQoaAZHQHAwAAAAAABoB00DAWgIR0A+krQgLZzxdX2UKGgGR0By4AAAAAAAaAdNLgFoCEdAPspwbVBlc3V9lChoBkdAaSAAAAAAAGgHS8loCEdAPvf9xZMcqHV9lChoBkdAcMAAAAAAAGgHTQwBaAhHQD8nmQr+YMR1fZQoaAZHQFwAAAAAAABoB0twaAhHQD866QNkOI91fZQoaAZHQG8AAAAAAABoB0v4aAhHQD9oDq4YrJ91fZQoaAZHQHEwAAAAAABoB00TAWgIR0A/lnRLK3d9dX2UKGgGR0Bj4AAAAAAAaAdLn2gIR0A/sj3Ehq0udX2UKGgGR0BvIAAAAAAAaAdL+WgIR0A/3iGFi8WcdX2UKGgGR0BooAAAAAAAaAdLxWgIR0BAABGYrrgPdX2UKGgGR0BpYAAAAAAAaAdLy2gIR0BAErGR3eN2dX2UKGgGR0ByoAAAAAAAaAdNKgFoCEdAQCud5IH1OHV9lChoBkdAZ+AAAAAAAGgHS79oCEdAQEU6vJRwZXV9lChoBkdAfDAAAAAAAGgHTcMBaAhHQEBtRb8m8dx1fZQoaAZHQHJAAAAAAABoB00kAWgIR0BAhrELpiZwdX2UKGgGR0Bx0AAAAAAAaAdNHQFoCEdAQJ7eGfwqiHV9lChoBkdAZwAAAAAAAGgHS7hoCEdAQK5TIeYD1XV9lChoBkdAcdAAAAAAAGgHTR0BaAhHQEDIOMl1KXh1fZQoaAZHQG9gAAAAAABoB0v7aAhHQEDihIOH3111fZQoaAZHQG7AAAAAAABoB0v2aAhHQED5ShrWRRx1fZQoaAZHQHIAAAAAAABoB00gAWgIR0BBEzposZpBdX2UKGgGR0BrwAAAAAAAaAdL3mgIR0BBKLR8c+7ldX2UKGgGR0B0IAAAAAAAaAdNQgFoCEdAQU3nwG4ZuXV9lChoBkdAZAAAAAAAAGgHS6BoCEdAQV/irDIiknV9lChoBkdAZyAAAAAAAGgHS7loCEdAQXLxsl9jPXV9lChoBkdAaeAAAAAAAGgHS89oCEdAQYVPk7wKB3V9lChoBkdAaaAAAAAAAGgHS81oCEdAQZg8jiXIEXV9lChoBkdAYuAAAAAAAGgHS5doCEdAQaU29+PRzHV9lChoBkdAaUAAAAAAAGgHS8poCEdAQbb7Ikqto3V9lChoBkdAYKAAAAAAAGgHS4VoCEdAQcJiRW912nV9lChoBkdAZGAAAAAAAGgHS6NoCEdAQdBbSqlxfnV9lChoBkdAa4AAAAAAAGgHS9xoCEdAQeNYB/7SA3V9lChoBkdAb0AAAAAAAGgHS/poCEdAQfn/HYHxBnV9lChoBkdAcmAAAAAAAGgHTSYBaAhHQEIX67/XGwR1fZQoaAZHQGmAAAAAAABoB0vMaAhHQEIrQhwEQoV1fZQoaAZHQGbAAAAAAABoB0u2aAhHQEI9GVAzHjp1fZQoaAZHQHCAAAAAAABoB00IAWgIR0BCVTMJQcghdX2UKGgGR0BmIAAAAAAAaAdLsWgIR0BCZfFR51NhdX2UKGgGR0BwwAAAAAAAaAdNDAFoCEdAQnxh8YyftnV9lChoBkdAa8AAAAAAAGgHS95oCEdAQpBFTefqYHV9lChoBkdAbAAAAAAAAGgHS+BoCEdAQqNXko4MnnV9lChoBkdAb0AAAAAAAGgHS/poCEdAQrkbYK6WgXV9lChoBkdAcsAAAAAAAGgHTSwBaAhHQELTvfj0cwR1fZQoaAZHQGqAAAAAAABoB0vUaAhHQELmMl1KXfJ1fZQoaAZHQHAwAAAAAABoB00DAWgIR0BC+4/3WWhRdX2UKGgGR0BswAAAAAAAaAdL5mgIR0BDFbWVeKKpdWUu"
|
56 |
},
|
57 |
"ep_success_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
|
|
76 |
},
|
77 |
"action_space": {
|
78 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
79 |
+
":serialized:": "gAWVpAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAgAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooQDnWcOQbNSf8IXpIt/BgeJowDaW5jlIoRbS2nfyIeZJ+nBuvILybEggB1jApoYXNfdWludDMylEsBjAh1aW50ZWdlcpSKBeqrbIMAdWJ1Yi4=",
|
80 |
"n": "2",
|
81 |
"start": "0",
|
82 |
"_shape": [],
|
|
|
96 |
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
97 |
"__module__": "stable_baselines3.common.buffers",
|
98 |
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
99 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x323793e50>",
|
100 |
+
"add": "<function ReplayBuffer.add at 0x323793ee0>",
|
101 |
+
"sample": "<function ReplayBuffer.sample at 0x323793f70>",
|
102 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x3237a0040>",
|
103 |
+
"_maybe_cast_dtype": "<staticmethod object at 0x32379f250>",
|
104 |
"__abstractmethods__": "frozenset()",
|
105 |
+
"_abc_impl": "<_abc._abc_data object at 0x3237a1080>"
|
106 |
},
|
107 |
"replay_buffer_kwargs": {},
|
108 |
"train_freq": {
|
DQN-CartPole-v1/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 545952
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a5995a45a9bdf0ce366621aa02101c25497ced05b34400cbdf52d22c3180d8af
|
3 |
size 545952
|
DQN-CartPole-v1/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 545074
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b25c1853b58b578073b9f2b247ef4a8dc05aa424ff06b51f3e35cce4b030a53f
|
3 |
size 545074
|
DQN-CartPole-v1/system_info.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
- OS: macOS-14.
|
2 |
- Python: 3.9.19
|
3 |
- Stable-Baselines3: 2.1.0
|
4 |
- PyTorch: 2.2.1
|
|
|
1 |
+
- OS: macOS-14.4.1-arm64-arm-64bit Darwin Kernel Version 23.4.0: Fri Mar 15 00:12:41 PDT 2024; root:xnu-10063.101.17~1/RELEASE_ARM64_T8103
|
2 |
- Python: 3.9.19
|
3 |
- Stable-Baselines3: 2.1.0
|
4 |
- PyTorch: 2.2.1
|
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: CartPole-v1
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: CartPole-v1
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 203.20 +/- 81.06
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x2a0c7a700>", "_build": "<function DQNPolicy._build at 0x2a0c7a790>", "make_q_net": "<function DQNPolicy.make_q_net at 0x2a0c7a820>", "forward": "<function DQNPolicy.forward at 0x2a0c7a8b0>", "_predict": "<function DQNPolicy._predict at 0x2a0c7a940>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x2a0c7a9d0>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x2a0c7aa60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x2a0c7df00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVUQAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARSZUxVlJOUjAhuZXRfYXJjaJRdlChNAAFNAAFldS4=", "activation_fn": "<class 'torch.nn.modules.activation.ReLU'>", "net_arch": [256, 256]}, "num_timesteps": 100000, "_total_timesteps": 100000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1712635922969288000, "learning_rate": 0.0001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAOEzGj+IzA4/r5l2PTgeWz6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLBIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAOhXFj+n9kA/dJl+PU/6x72UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLBIaUjAFDlHSUUpQu"}, "_episode_num": 4160, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCgAAAAAAACMAWyUSwyMAXSUR0BAE0z9CNS7dX2UKGgGR0AkAAAAAAAAaAdLCmgIR0BAFLy1/lQudX2UKGgGR0A6AAAAAAAAaAdLGmgIR0BAGKD9OymidX2UKGgGR0BjgAAAAAAAaAdLnGgIR0BALZY5ksjFdX2UKGgGR0BxMAAAAAAAaAdNEwFoCEdAQEigh8pkPXV9lChoBkdAaaAAAAAAAGgHS81oCEdAQF52+wkgOnV9lChoBkdAamAAAAAAAGgHS9NoCEdAQHEEHMUypXV9lChoBkdAbAAAAAAAAGgHS+BoCEdAQIYflp48l3V9lChoBkdAb+AAAAAAAGgHS/9oCEdAQJ8LjPv8ZXV9lChoBkdAYWAAAAAAAGgHS4toCEdAQKqdz4k/r3V9lChoBkdAZAAAAAAAAGgHS6BoCEdAQLggaFVT73V9lChoBkdAZEAAAAAAAGgHS6JoCEdAQMb/ffoA4nV9lChoBkdAQwAAAAAAAGgHSyZoCEdAQMrxy4nWrnV9lChoBkdATwAAAAAAAGgHSz5oCEdAQNA11nuiOHV9lChoBkdAbaAAAAAAAGgHS+1oCEdAQOwbwSamXXV9lChoBkdAY8AAAAAAAGgHS55oCEdAQPsxyn1nNHV9lChoBkdAZcAAAAAAAGgHS65oCEdAQQoyEcsDn3V9lChoBkdAZaAAAAAAAGgHS61oCEdAQRlmrbQC0XV9lChoBkdAbEAAAAAAAGgHS+JoCEdAQS1f5ULlWHV9lChoBkdAYoAAAAAAAGgHS5RoCEdAQTtC3PRiPXV9lChoBkdAbCAAAAAAAGgHS+FoCEdAQUz8P4EfT3V9lChoBkdAb+AAAAAAAGgHS/9oCEdAQWOjGkvboXV9lChoBkdAQgAAAAAAAGgHSyRoCEdAQWatT1kDp3V9lChoBkdAZ2AAAAAAAGgHS7toCEdAQXduLrHEM3V9lChoBkdAb2AAAAAAAGgHS/toCEdAQZqOJcgQpXV9lChoBkdAY2AAAAAAAGgHS5toCEdAQbD4YaYNRXV9lChoBkdAZ2AAAAAAAGgHS7toCEdAQceqHXVbzXV9lChoBkdAZwAAAAAAAGgHS7hoCEdAQdhNwiqyW3V9lChoBkdAbyAAAAAAAGgHS/loCEdAQe5TfixVyXV9lChoBkdAaqAAAAAAAGgHS9VoCEdAQgBkK/mDDnV9lChoBkdAbCAAAAAAAGgHS+FoCEdAQhUGVzIV/XV9lChoBkdASAAAAAAAAGgHSzBoCEdAQhkWEbo8p3V9lChoBkdAMwAAAAAAAGgHSxNoCEdAQhpLmITGpHV9lChoBkdAOAAAAAAAAGgHSxhoCEdAQhyVUuL743V9lChoBkdANQAAAAAAAGgHSxVoCEdAQh5tcfNiY3V9lChoBkdAQwAAAAAAAGgHSyZoCEdAQiIKKHfuTnV9lChoBkdAZ+AAAAAAAGgHS79oCEdAQjLI7vG6w3V9lChoBkdAaQAAAAAAAGgHS8hoCEdAQkn+6y0KJHV9lChoBkdAYKAAAAAAAGgHS4VoCEdAQldD+irT6XV9lChoBkdAZoAAAAAAAGgHS7RoCEdAQma4OMERrnV9lChoBkdAZWAAAAAAAGgHS6toCEdAQna24NI9T3V9lChoBkdAYuAAAAAAAGgHS5doCEdAQoOuNgjQiXV9lChoBkdAbSAAAAAAAGgHS+loCEdAQpep4rz5GnV9lChoBkdAZwAAAAAAAGgHS7hoCEdAQqd3KSxJNHV9lChoBkdAZgAAAAAAAGgHS7BoCEdAQrh5Rjz7M3V9lChoBkdAaKAAAAAAAGgHS8VoCEdAQsqdc0Ltu3V9lChoBkdAaIAAAAAAAGgHS8RoCEdAQtqySmqHXXV9lChoBkdAPQAAAAAAAGgHSx1oCEdAQt1BBzFMqXV9lChoBkdANAAAAAAAAGgHSxRoCEdAQt7J2dNFjXV9lChoBkdANwAAAAAAAGgHSxdoCEdAQuBe5WilBXV9lChoBkdAZsAAAAAAAGgHS7ZoCEdAQvCXt0FKTXV9lChoBkdActAAAAAAAGgHTS0BaAhHQEMR5WRzRx91fZQoaAZHQGxAAAAAAABoB0viaAhHQEMm0TDfm9x1fZQoaAZHQGhAAAAAAABoB0vCaAhHQEM3x5s0pEx1fZQoaAZHQGVgAAAAAABoB0uraAhHQENGK9f1Hvt1fZQoaAZHQGOAAAAAAABoB0ucaAhHQENTzBhx5s11fZQoaAZHQGsgAAAAAABoB0vZaAhHQENnzWf9P1t1fZQoaAZHQGXgAAAAAABoB0uvaAhHQEN3uqFRHgB1fZQoaAZHQGhgAAAAAABoB0vDaAhHQEOJFS88La51fZQoaAZHQGMAAAAAAABoB0uYaAhHQEOVqQiiZfF1fZQoaAZHQGhgAAAAAABoB0vDaAhHQEOnV7x/d691fZQoaAZHQGegAAAAAABoB0u9aAhHQEO4tDD0lJJ1fZQoaAZHQGzgAAAAAABoB0vnaAhHQEPZObiIcip1fZQoaAZHQGqAAAAAAABoB0vUaAhHQEPvkWAPNFB1fZQoaAZHQGoAAAAAAABoB0vQaAhHQEQDLA57w8Z1fZQoaAZHQHqwAAAAAABoB02rAWgIR0BELK94/u9fdX2UKGgGR0BwkAAAAAAAaAdNCQFoCEdAREW4Vh1DB3V9lChoBkdAa8AAAAAAAGgHS95oCEdARFw77sOXmnV9lChoBkdAayAAAAAAAGgHS9loCEdARHHnSv1UVHV9lChoBkdAYuAAAAAAAGgHS5doCEdARIl8ma6ST3V9lChoBkdAZ6AAAAAAAGgHS71oCEdARKBMFlkH2XV9lChoBkdAbiAAAAAAAGgHS/FoCEdARLlr9ETg23V9lChoBkdAaMAAAAAAAGgHS8ZoCEdARM4v114gR3V9lChoBkdAayAAAAAAAGgHS9loCEdAROB1klNUO3V9lChoBkdAZ4AAAAAAAGgHS7xoCEdARPAwIt16mnV9lChoBkdAZwAAAAAAAGgHS7hoCEdARQFJ4B3iaXV9lChoBkdAcqAAAAAAAGgHTSoBaAhHQEUZs3yZrpJ1fZQoaAZHQG8gAAAAAABoB0v5aAhHQEUu0rsjVx11fZQoaAZHQGWgAAAAAABoB0utaAhHQEVDVqesgdR1fZQoaAZHQGmgAAAAAABoB0vNaAhHQEVYQ5FPSD11fZQoaAZHQGbgAAAAAABoB0u3aAhHQEVnJHRTjvN1fZQoaAZHQGgAAAAAAABoB0vAaAhHQEV3sYVIqb11fZQoaAZHQGugAAAAAABoB0vdaAhHQEWKtg8bJfZ1fZQoaAZHQGTAAAAAAABoB0umaAhHQEWZZElVtGd1fZQoaAZHQGLgAAAAAABoB0uXaAhHQEWl6VMVUMp1fZQoaAZHQG1AAAAAAABoB0vqaAhHQEW5zbvgFX91fZQoaAZHQHaAAAAAAABoB01oAWgIR0BF2w+2VmjCdX2UKGgGR0BpIAAAAAAAaAdLyWgIR0BF7RcE/0NCdX2UKGgGR0BsgAAAAAAAaAdL5GgIR0BGACKBNEgGdX2UKGgGR0BkAAAAAAAAaAdLoGgIR0BGFFIEr5IpdX2UKGgGR0BqAAAAAAAAaAdL0GgIR0BGJ0QTVUdadX2UKGgGR0BqwAAAAAAAaAdL1mgIR0BGOK4x1xKhdX2UKGgGR0BoYAAAAAAAaAdLw2gIR0BGSP4M4LkTdX2UKGgGR0BykAAAAAAAaAdNKQFoCEdARmKk43m3fHV9lChoBkdAaEAAAAAAAGgHS8JoCEdARnNI7Njbz3V9lChoBkdAauAAAAAAAGgHS9doCEdARoX60pmVaHV9lChoBkdAaOAAAAAAAGgHS8doCEdARpbLU1AJLXV9lChoBkdAfJAAAAAAAGgHTckBaAhHQEa+PGyX2M91fZQoaAZHQHFgAAAAAABoB00WAWgIR0BG1ceS0Sh8dX2UKGgGR0BpYAAAAAAAaAdLy2gIR0BG76WX1J18dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 12500, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVFgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAJqZmcD//3//UHfWvv//f/+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAJqZmUD//39/UHfWPv//f3+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMPVstNC44MDAwMDAyZSswMCAtMy40MDI4MjM1ZSszOCAtNC4xODg3OTAzZS0wMSAtMy40MDI4MjM1ZSszOF2UjAloaWdoX3JlcHKUjDlbNC44MDAwMDAyZSswMCAzLjQwMjgyMzVlKzM4IDQuMTg4NzkwM2UtMDEgMy40MDI4MjM1ZSszOF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]", "high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]", "low_repr": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]", "high_repr": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVpQEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAgAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooRcVasbyqTJexHUS/+EVKUkwCMA2luY5SKEelR3FS2n60tHb2SMiRvzoQAdYwKaGFzX3VpbnQzMpRLAYwIdWludGVnZXKUigVzMBi5AHVidWIu", "n": "2", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "buffer_size": 1000000, "batch_size": 32, "learning_starts": 50000, "tau": 1.0, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x2a0c50f70>", "add": "<function ReplayBuffer.add at 0x2a0c60040>", "sample": "<function ReplayBuffer.sample at 0x2a0c600d0>", "_get_samples": "<function ReplayBuffer._get_samples at 0x2a0c60160>", "_maybe_cast_dtype": "<staticmethod object at 0x2a0c5e280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x2a0c5f300>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.05, "exploration_fraction": 0.1, "target_update_interval": 10000, "_n_calls": 100000, "max_grad_norm": 10, "exploration_rate": 0.05, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVIgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMhi9Vc2Vycy9zdWJoYXNpc2gvRG9jdW1lbnRzL2lOZXVyb24vUmVpbmZvcmNlbWVudC1MZWFybmluZy9kcmwtMmVkL3JsX2RybC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIyGL1VzZXJzL3N1Ymhhc2lzaC9Eb2N1bWVudHMvaU5ldXJvbi9SZWluZm9yY2VtZW50LUxlYXJuaW5nL2RybC0yZWQvcmxfZHJsL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "batch_norm_stats": [], "batch_norm_stats_target": [], "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyxkAXwAGACIAWsEchCIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAZABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIyGL1VzZXJzL3N1Ymhhc2lzaC9Eb2N1bWVudHMvaU5ldXJvbi9SZWluZm9yY2VtZW50LUxlYXJuaW5nL2RybC0yZWQvcmxfZHJsL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtxQwYAAQwBBAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjIYvVXNlcnMvc3ViaGFzaXNoL0RvY3VtZW50cy9pTmV1cm9uL1JlaW5mb3JjZW1lbnQtTGVhcm5pbmcvZHJsLTJlZC9ybF9kcmwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlGgdKVKUaB0pUpSHlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCN9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoCowIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgudYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP6mZmZmZmZqFlFKUaDZHP7mZmZmZmZqFlFKUaDZHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "macOS-14.2.1-arm64-arm-64bit Darwin Kernel Version 23.2.0: Wed Nov 15 21:53:34 PST 2023; root:xnu-10002.61.3~2/RELEASE_ARM64_T8103", "Python": "3.9.19", "Stable-Baselines3": "2.1.0", "PyTorch": "2.2.1", "GPU Enabled": "False", "Numpy": "1.26.4", "Cloudpickle": "3.0.0", "Gymnasium": "0.29.1", "OpenAI Gym": "0.26.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x3237bb5e0>", "_build": "<function DQNPolicy._build at 0x3237bb670>", "make_q_net": "<function DQNPolicy.make_q_net at 0x3237bb700>", "forward": "<function DQNPolicy.forward at 0x3237bb790>", "_predict": "<function DQNPolicy._predict at 0x3237bb820>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x3237bb8b0>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x3237bb940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x3237bfcc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVUQAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARSZUxVlJOUjAhuZXRfYXJjaJRdlChNAAFNAAFldS4=", "activation_fn": "<class 'torch.nn.modules.activation.ReLU'>", "net_arch": [256, 256]}, "num_timesteps": 100000, "_total_timesteps": 100000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1713087975250453000, "learning_rate": 0.0001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAD5zEr0qVn28mzeyPAriZryUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLBIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAOs3Ab2JZVe+92uFPGH8iz6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLBIaUjAFDlHSUUpQu"}, "_episode_num": 3870, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV+wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCQAAAAAAACMAWyUSwqMAXSUR0A3SBrN4Z/DdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0A3SZbpu/DcdX2UKGgGR0BsgAAAAAAAaAdL5GgIR0A3b6/qPfbcdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0A3cj7ALy+YdX2UKGgGR0BigAAAAAAAaAdLlGgIR0A3jMQmNR3vdX2UKGgGR0BmAAAAAAAAaAdLsGgIR0A3qvi97F85dX2UKGgGR0BaQAAAAAAAaAdLaWgIR0A3vQqI7/4qdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0A3v1uzhP0qdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0A3wLXtjTa1dX2UKGgGR0AiAAAAAAAAaAdLCWgIR0A3wlzltCRfdX2UKGgGR0AgAAAAAAAAaAdLCGgIR0A3w6+nIhhZdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0A3xRLsa86FdX2UKGgGR0BlwAAAAAAAaAdLrmgIR0A34vpyIYWMdX2UKGgGR0Bh4AAAAAAAaAdLj2gIR0A3+9ETg2qDdX2UKGgGR0BtAAAAAAAAaAdL6GgIR0A4J5vLowEhdX2UKGgGR0BvoAAAAAAAaAdL/WgIR0A4YiV0Lc9GdX2UKGgGR0BiIAAAAAAAaAdLkWgIR0A4fd/rjYI0dX2UKGgGR0BxwAAAAAAAaAdNHAFoCEdAOLHyup0fYHV9lChoBkdAVAAAAAAAAGgHS1BoCEdAOL+6mO2iL3V9lChoBkdAbaAAAAAAAGgHS+1oCEdAOOmyHEdeY3V9lChoBkdAb2AAAAAAAGgHS/toCEdAORSbUgB91HV9lChoBkdAYeAAAAAAAGgHS49oCEdAOS3iWE9MbnV9lChoBkdAbsAAAAAAAGgHS/ZoCEdAOVmB4D9wWHV9lChoBkdAcjAAAAAAAGgHTSMBaAhHQDmLYmLLpzN1fZQoaAZHQHIQAAAAAABoB00hAWgIR0A5vRzRx95RdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAOiNtdiUgS3V9lChoBkdAbqAAAAAAAGgHS/VoCEdAOlHQ6ZH/cXV9lChoBkdAZmAAAAAAAGgHS7NoCEdAOnETHsC1Z3V9lChoBkdAaIAAAAAAAGgHS8RoCEdAOpOC04R283V9lChoBkdAcjAAAAAAAGgHTSMBaAhHQDrGXXyy2QZ1fZQoaAZHQGygAAAAAABoB0vlaAhHQDruLehwl0J1fZQoaAZHQGGAAAAAAABoB0uMaAhHQDsGjafzz3B1fZQoaAZHQGmAAAAAAABoB0vMaAhHQDsof0VafSR1fZQoaAZHQHEAAAAAAABoB00QAWgIR0A7aEVWS2YwdX2UKGgGR0BtwAAAAAAAaAdL7mgIR0A7lpMYdhiLdX2UKGgGR0BwwAAAAAAAaAdNDAFoCEdAO8X225QP7XV9lChoBkdAaYAAAAAAAGgHS8xoCEdAO+/BJqZc9nV9lChoBkdAYsAAAAAAAGgHS5ZoCEdAPApu63AmA3V9lChoBkdAaEAAAAAAAGgHS8JoCEdAPCx/Aj6eoXV9lChoBkdAbkAAAAAAAGgHS/JoCEdAPFqQNkOI7HV9lChoBkdAcPAAAAAAAGgHTQ8BaAhHQDyKMERradt1fZQoaAZHQGCgAAAAAABoB0uFaAhHQDyhHlOoHcF1fZQoaAZHQHDwAAAAAABoB00PAWgIR0A80iIcinpCdX2UKGgGR0BxAAAAAAAAaAdNEAFoCEdAPQklAu7HyXV9lChoBkdAcUAAAAAAAGgHTRQBaAhHQD1AZiuuA7R1fZQoaAZHQG3AAAAAAABoB0vuaAhHQD1p+CsfaHt1fZQoaAZHQGbAAAAAAABoB0u2aAhHQD2L4Kx9oex1fZQoaAZHQGTAAAAAAABoB0umaAhHQD2n7P6be/J1fZQoaAZHQGCgAAAAAABoB0uFaAhHQD290MgEEDB1fZQoaAZHQD0AAAAAAABoB0sdaAhHQD3EC4jKPn11fZQoaAZHQGuAAAAAAABoB0vcaAhHQD3o5WBBiTd1fZQoaAZHQGVgAAAAAABoB0uraAhHQD4GHuZ1FH91fZQoaAZHQG6AAAAAAABoB0v0aAhHQD4xiz9jwx51fZQoaAZHQGngAAAAAABoB0vPaAhHQD5Z9Brvb491fZQoaAZHQHAwAAAAAABoB00DAWgIR0A+krQgLZzxdX2UKGgGR0By4AAAAAAAaAdNLgFoCEdAPspwbVBlc3V9lChoBkdAaSAAAAAAAGgHS8loCEdAPvf9xZMcqHV9lChoBkdAcMAAAAAAAGgHTQwBaAhHQD8nmQr+YMR1fZQoaAZHQFwAAAAAAABoB0twaAhHQD866QNkOI91fZQoaAZHQG8AAAAAAABoB0v4aAhHQD9oDq4YrJ91fZQoaAZHQHEwAAAAAABoB00TAWgIR0A/lnRLK3d9dX2UKGgGR0Bj4AAAAAAAaAdLn2gIR0A/sj3Ehq0udX2UKGgGR0BvIAAAAAAAaAdL+WgIR0A/3iGFi8WcdX2UKGgGR0BooAAAAAAAaAdLxWgIR0BAABGYrrgPdX2UKGgGR0BpYAAAAAAAaAdLy2gIR0BAErGR3eN2dX2UKGgGR0ByoAAAAAAAaAdNKgFoCEdAQCud5IH1OHV9lChoBkdAZ+AAAAAAAGgHS79oCEdAQEU6vJRwZXV9lChoBkdAfDAAAAAAAGgHTcMBaAhHQEBtRb8m8dx1fZQoaAZHQHJAAAAAAABoB00kAWgIR0BAhrELpiZwdX2UKGgGR0Bx0AAAAAAAaAdNHQFoCEdAQJ7eGfwqiHV9lChoBkdAZwAAAAAAAGgHS7hoCEdAQK5TIeYD1XV9lChoBkdAcdAAAAAAAGgHTR0BaAhHQEDIOMl1KXh1fZQoaAZHQG9gAAAAAABoB0v7aAhHQEDihIOH3111fZQoaAZHQG7AAAAAAABoB0v2aAhHQED5ShrWRRx1fZQoaAZHQHIAAAAAAABoB00gAWgIR0BBEzposZpBdX2UKGgGR0BrwAAAAAAAaAdL3mgIR0BBKLR8c+7ldX2UKGgGR0B0IAAAAAAAaAdNQgFoCEdAQU3nwG4ZuXV9lChoBkdAZAAAAAAAAGgHS6BoCEdAQV/irDIiknV9lChoBkdAZyAAAAAAAGgHS7loCEdAQXLxsl9jPXV9lChoBkdAaeAAAAAAAGgHS89oCEdAQYVPk7wKB3V9lChoBkdAaaAAAAAAAGgHS81oCEdAQZg8jiXIEXV9lChoBkdAYuAAAAAAAGgHS5doCEdAQaU29+PRzHV9lChoBkdAaUAAAAAAAGgHS8poCEdAQbb7Ikqto3V9lChoBkdAYKAAAAAAAGgHS4VoCEdAQcJiRW912nV9lChoBkdAZGAAAAAAAGgHS6NoCEdAQdBbSqlxfnV9lChoBkdAa4AAAAAAAGgHS9xoCEdAQeNYB/7SA3V9lChoBkdAb0AAAAAAAGgHS/poCEdAQfn/HYHxBnV9lChoBkdAcmAAAAAAAGgHTSYBaAhHQEIX67/XGwR1fZQoaAZHQGmAAAAAAABoB0vMaAhHQEIrQhwEQoV1fZQoaAZHQGbAAAAAAABoB0u2aAhHQEI9GVAzHjp1fZQoaAZHQHCAAAAAAABoB00IAWgIR0BCVTMJQcghdX2UKGgGR0BmIAAAAAAAaAdLsWgIR0BCZfFR51NhdX2UKGgGR0BwwAAAAAAAaAdNDAFoCEdAQnxh8YyftnV9lChoBkdAa8AAAAAAAGgHS95oCEdAQpBFTefqYHV9lChoBkdAbAAAAAAAAGgHS+BoCEdAQqNXko4MnnV9lChoBkdAb0AAAAAAAGgHS/poCEdAQrkbYK6WgXV9lChoBkdAcsAAAAAAAGgHTSwBaAhHQELTvfj0cwR1fZQoaAZHQGqAAAAAAABoB0vUaAhHQELmMl1KXfJ1fZQoaAZHQHAwAAAAAABoB00DAWgIR0BC+4/3WWhRdX2UKGgGR0BswAAAAAAAaAdL5mgIR0BDFbWVeKKpdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 12500, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVFgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAJqZmcD//3//UHfWvv//f/+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAJqZmUD//39/UHfWPv//f3+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMPVstNC44MDAwMDAyZSswMCAtMy40MDI4MjM1ZSszOCAtNC4xODg3OTAzZS0wMSAtMy40MDI4MjM1ZSszOF2UjAloaWdoX3JlcHKUjDlbNC44MDAwMDAyZSswMCAzLjQwMjgyMzVlKzM4IDQuMTg4NzkwM2UtMDEgMy40MDI4MjM1ZSszOF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]", "high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]", "low_repr": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]", "high_repr": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVpAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAgAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooQDnWcOQbNSf8IXpIt/BgeJowDaW5jlIoRbS2nfyIeZJ+nBuvILybEggB1jApoYXNfdWludDMylEsBjAh1aW50ZWdlcpSKBeqrbIMAdWJ1Yi4=", "n": "2", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "buffer_size": 1000000, "batch_size": 32, "learning_starts": 50000, "tau": 1.0, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x323793e50>", "add": "<function ReplayBuffer.add at 0x323793ee0>", "sample": "<function ReplayBuffer.sample at 0x323793f70>", "_get_samples": "<function ReplayBuffer._get_samples at 0x3237a0040>", "_maybe_cast_dtype": "<staticmethod object at 0x32379f250>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x3237a1080>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.05, "exploration_fraction": 0.1, "target_update_interval": 10000, "_n_calls": 100000, "max_grad_norm": 10, "exploration_rate": 0.05, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVIgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMhi9Vc2Vycy9zdWJoYXNpc2gvRG9jdW1lbnRzL2lOZXVyb24vUmVpbmZvcmNlbWVudC1MZWFybmluZy9kcmwtMmVkL3JsX2RybC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIyGL1VzZXJzL3N1Ymhhc2lzaC9Eb2N1bWVudHMvaU5ldXJvbi9SZWluZm9yY2VtZW50LUxlYXJuaW5nL2RybC0yZWQvcmxfZHJsL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "batch_norm_stats": [], "batch_norm_stats_target": [], "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyxkAXwAGACIAWsEchCIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAZABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIyGL1VzZXJzL3N1Ymhhc2lzaC9Eb2N1bWVudHMvaU5ldXJvbi9SZWluZm9yY2VtZW50LUxlYXJuaW5nL2RybC0yZWQvcmxfZHJsL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtxQwYAAQwBBAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjIYvVXNlcnMvc3ViaGFzaXNoL0RvY3VtZW50cy9pTmV1cm9uL1JlaW5mb3JjZW1lbnQtTGVhcm5pbmcvZHJsLTJlZC9ybF9kcmwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlGgdKVKUaB0pUpSHlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCN9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoCowIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgudYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP6mZmZmZmZqFlFKUaDZHP7mZmZmZmZqFlFKUaDZHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "macOS-14.4.1-arm64-arm-64bit Darwin Kernel Version 23.4.0: Fri Mar 15 00:12:41 PDT 2024; root:xnu-10063.101.17~1/RELEASE_ARM64_T8103", "Python": "3.9.19", "Stable-Baselines3": "2.1.0", "PyTorch": "2.2.1", "GPU Enabled": "False", "Numpy": "1.26.4", "Cloudpickle": "3.0.0", "Gymnasium": "0.29.1", "OpenAI Gym": "0.26.2"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 203.2, "std_reward": 81.06022452473222, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-04-14T15:16:58.051434"}
|