SubhasishSaha commited on
Commit
022dd62
·
verified ·
1 Parent(s): b699b43

Push to Hub

Browse files
DQN-CartPole-v1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ce9d509edf1d87b70794e2b72a29c27e0a1524a5d62987d1ca715f7382a1882
3
+ size 1108125
DQN-CartPole-v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
DQN-CartPole-v1/data ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.dqn.policies",
6
+ "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}",
7
+ "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
8
+ "__init__": "<function DQNPolicy.__init__ at 0x2a0c7a700>",
9
+ "_build": "<function DQNPolicy._build at 0x2a0c7a790>",
10
+ "make_q_net": "<function DQNPolicy.make_q_net at 0x2a0c7a820>",
11
+ "forward": "<function DQNPolicy.forward at 0x2a0c7a8b0>",
12
+ "_predict": "<function DQNPolicy._predict at 0x2a0c7a940>",
13
+ "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x2a0c7a9d0>",
14
+ "set_training_mode": "<function DQNPolicy.set_training_mode at 0x2a0c7aa60>",
15
+ "__abstractmethods__": "frozenset()",
16
+ "_abc_impl": "<_abc._abc_data object at 0x2a0c7df00>"
17
+ },
18
+ "verbose": 1,
19
+ "policy_kwargs": {
20
+ ":type:": "<class 'dict'>",
21
+ ":serialized:": "gAWVUQAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARSZUxVlJOUjAhuZXRfYXJjaJRdlChNAAFNAAFldS4=",
22
+ "activation_fn": "<class 'torch.nn.modules.activation.ReLU'>",
23
+ "net_arch": [
24
+ 256,
25
+ 256
26
+ ]
27
+ },
28
+ "num_timesteps": 100000,
29
+ "_total_timesteps": 100000.0,
30
+ "_num_timesteps_at_start": 0,
31
+ "seed": null,
32
+ "action_noise": null,
33
+ "start_time": 1712635922969288000,
34
+ "learning_rate": 0.0001,
35
+ "tensorboard_log": null,
36
+ "_last_obs": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVhQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAOEzGj+IzA4/r5l2PTgeWz6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLBIaUjAFDlHSUUpQu"
39
+ },
40
+ "_last_episode_starts": {
41
+ ":type:": "<class 'numpy.ndarray'>",
42
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
43
+ },
44
+ "_last_original_obs": {
45
+ ":type:": "<class 'numpy.ndarray'>",
46
+ ":serialized:": "gAWVhQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAOhXFj+n9kA/dJl+PU/6x72UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLBIaUjAFDlHSUUpQu"
47
+ },
48
+ "_episode_num": 4160,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV6QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCgAAAAAAACMAWyUSwyMAXSUR0BAE0z9CNS7dX2UKGgGR0AkAAAAAAAAaAdLCmgIR0BAFLy1/lQudX2UKGgGR0A6AAAAAAAAaAdLGmgIR0BAGKD9OymidX2UKGgGR0BjgAAAAAAAaAdLnGgIR0BALZY5ksjFdX2UKGgGR0BxMAAAAAAAaAdNEwFoCEdAQEigh8pkPXV9lChoBkdAaaAAAAAAAGgHS81oCEdAQF52+wkgOnV9lChoBkdAamAAAAAAAGgHS9NoCEdAQHEEHMUypXV9lChoBkdAbAAAAAAAAGgHS+BoCEdAQIYflp48l3V9lChoBkdAb+AAAAAAAGgHS/9oCEdAQJ8LjPv8ZXV9lChoBkdAYWAAAAAAAGgHS4toCEdAQKqdz4k/r3V9lChoBkdAZAAAAAAAAGgHS6BoCEdAQLggaFVT73V9lChoBkdAZEAAAAAAAGgHS6JoCEdAQMb/ffoA4nV9lChoBkdAQwAAAAAAAGgHSyZoCEdAQMrxy4nWrnV9lChoBkdATwAAAAAAAGgHSz5oCEdAQNA11nuiOHV9lChoBkdAbaAAAAAAAGgHS+1oCEdAQOwbwSamXXV9lChoBkdAY8AAAAAAAGgHS55oCEdAQPsxyn1nNHV9lChoBkdAZcAAAAAAAGgHS65oCEdAQQoyEcsDn3V9lChoBkdAZaAAAAAAAGgHS61oCEdAQRlmrbQC0XV9lChoBkdAbEAAAAAAAGgHS+JoCEdAQS1f5ULlWHV9lChoBkdAYoAAAAAAAGgHS5RoCEdAQTtC3PRiPXV9lChoBkdAbCAAAAAAAGgHS+FoCEdAQUz8P4EfT3V9lChoBkdAb+AAAAAAAGgHS/9oCEdAQWOjGkvboXV9lChoBkdAQgAAAAAAAGgHSyRoCEdAQWatT1kDp3V9lChoBkdAZ2AAAAAAAGgHS7toCEdAQXduLrHEM3V9lChoBkdAb2AAAAAAAGgHS/toCEdAQZqOJcgQpXV9lChoBkdAY2AAAAAAAGgHS5toCEdAQbD4YaYNRXV9lChoBkdAZ2AAAAAAAGgHS7toCEdAQceqHXVbzXV9lChoBkdAZwAAAAAAAGgHS7hoCEdAQdhNwiqyW3V9lChoBkdAbyAAAAAAAGgHS/loCEdAQe5TfixVyXV9lChoBkdAaqAAAAAAAGgHS9VoCEdAQgBkK/mDDnV9lChoBkdAbCAAAAAAAGgHS+FoCEdAQhUGVzIV/XV9lChoBkdASAAAAAAAAGgHSzBoCEdAQhkWEbo8p3V9lChoBkdAMwAAAAAAAGgHSxNoCEdAQhpLmITGpHV9lChoBkdAOAAAAAAAAGgHSxhoCEdAQhyVUuL743V9lChoBkdANQAAAAAAAGgHSxVoCEdAQh5tcfNiY3V9lChoBkdAQwAAAAAAAGgHSyZoCEdAQiIKKHfuTnV9lChoBkdAZ+AAAAAAAGgHS79oCEdAQjLI7vG6w3V9lChoBkdAaQAAAAAAAGgHS8hoCEdAQkn+6y0KJHV9lChoBkdAYKAAAAAAAGgHS4VoCEdAQldD+irT6XV9lChoBkdAZoAAAAAAAGgHS7RoCEdAQma4OMERrnV9lChoBkdAZWAAAAAAAGgHS6toCEdAQna24NI9T3V9lChoBkdAYuAAAAAAAGgHS5doCEdAQoOuNgjQiXV9lChoBkdAbSAAAAAAAGgHS+loCEdAQpep4rz5GnV9lChoBkdAZwAAAAAAAGgHS7hoCEdAQqd3KSxJNHV9lChoBkdAZgAAAAAAAGgHS7BoCEdAQrh5Rjz7M3V9lChoBkdAaKAAAAAAAGgHS8VoCEdAQsqdc0Ltu3V9lChoBkdAaIAAAAAAAGgHS8RoCEdAQtqySmqHXXV9lChoBkdAPQAAAAAAAGgHSx1oCEdAQt1BBzFMqXV9lChoBkdANAAAAAAAAGgHSxRoCEdAQt7J2dNFjXV9lChoBkdANwAAAAAAAGgHSxdoCEdAQuBe5WilBXV9lChoBkdAZsAAAAAAAGgHS7ZoCEdAQvCXt0FKTXV9lChoBkdActAAAAAAAGgHTS0BaAhHQEMR5WRzRx91fZQoaAZHQGxAAAAAAABoB0viaAhHQEMm0TDfm9x1fZQoaAZHQGhAAAAAAABoB0vCaAhHQEM3x5s0pEx1fZQoaAZHQGVgAAAAAABoB0uraAhHQENGK9f1Hvt1fZQoaAZHQGOAAAAAAABoB0ucaAhHQENTzBhx5s11fZQoaAZHQGsgAAAAAABoB0vZaAhHQENnzWf9P1t1fZQoaAZHQGXgAAAAAABoB0uvaAhHQEN3uqFRHgB1fZQoaAZHQGhgAAAAAABoB0vDaAhHQEOJFS88La51fZQoaAZHQGMAAAAAAABoB0uYaAhHQEOVqQiiZfF1fZQoaAZHQGhgAAAAAABoB0vDaAhHQEOnV7x/d691fZQoaAZHQGegAAAAAABoB0u9aAhHQEO4tDD0lJJ1fZQoaAZHQGzgAAAAAABoB0vnaAhHQEPZObiIcip1fZQoaAZHQGqAAAAAAABoB0vUaAhHQEPvkWAPNFB1fZQoaAZHQGoAAAAAAABoB0vQaAhHQEQDLA57w8Z1fZQoaAZHQHqwAAAAAABoB02rAWgIR0BELK94/u9fdX2UKGgGR0BwkAAAAAAAaAdNCQFoCEdAREW4Vh1DB3V9lChoBkdAa8AAAAAAAGgHS95oCEdARFw77sOXmnV9lChoBkdAayAAAAAAAGgHS9loCEdARHHnSv1UVHV9lChoBkdAYuAAAAAAAGgHS5doCEdARIl8ma6ST3V9lChoBkdAZ6AAAAAAAGgHS71oCEdARKBMFlkH2XV9lChoBkdAbiAAAAAAAGgHS/FoCEdARLlr9ETg23V9lChoBkdAaMAAAAAAAGgHS8ZoCEdARM4v114gR3V9lChoBkdAayAAAAAAAGgHS9loCEdAROB1klNUO3V9lChoBkdAZ4AAAAAAAGgHS7xoCEdARPAwIt16mnV9lChoBkdAZwAAAAAAAGgHS7hoCEdARQFJ4B3iaXV9lChoBkdAcqAAAAAAAGgHTSoBaAhHQEUZs3yZrpJ1fZQoaAZHQG8gAAAAAABoB0v5aAhHQEUu0rsjVx11fZQoaAZHQGWgAAAAAABoB0utaAhHQEVDVqesgdR1fZQoaAZHQGmgAAAAAABoB0vNaAhHQEVYQ5FPSD11fZQoaAZHQGbgAAAAAABoB0u3aAhHQEVnJHRTjvN1fZQoaAZHQGgAAAAAAABoB0vAaAhHQEV3sYVIqb11fZQoaAZHQGugAAAAAABoB0vdaAhHQEWKtg8bJfZ1fZQoaAZHQGTAAAAAAABoB0umaAhHQEWZZElVtGd1fZQoaAZHQGLgAAAAAABoB0uXaAhHQEWl6VMVUMp1fZQoaAZHQG1AAAAAAABoB0vqaAhHQEW5zbvgFX91fZQoaAZHQHaAAAAAAABoB01oAWgIR0BF2w+2VmjCdX2UKGgGR0BpIAAAAAAAaAdLyWgIR0BF7RcE/0NCdX2UKGgGR0BsgAAAAAAAaAdL5GgIR0BGACKBNEgGdX2UKGgGR0BkAAAAAAAAaAdLoGgIR0BGFFIEr5IpdX2UKGgGR0BqAAAAAAAAaAdL0GgIR0BGJ0QTVUdadX2UKGgGR0BqwAAAAAAAaAdL1mgIR0BGOK4x1xKhdX2UKGgGR0BoYAAAAAAAaAdLw2gIR0BGSP4M4LkTdX2UKGgGR0BykAAAAAAAaAdNKQFoCEdARmKk43m3fHV9lChoBkdAaEAAAAAAAGgHS8JoCEdARnNI7Njbz3V9lChoBkdAauAAAAAAAGgHS9doCEdARoX60pmVaHV9lChoBkdAaOAAAAAAAGgHS8doCEdARpbLU1AJLXV9lChoBkdAfJAAAAAAAGgHTckBaAhHQEa+PGyX2M91fZQoaAZHQHFgAAAAAABoB00WAWgIR0BG1ceS0Sh8dX2UKGgGR0BpYAAAAAAAaAdLy2gIR0BG76WX1J18dWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 12500,
62
+ "observation_space": {
63
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
64
+ ":serialized:": "gAWVFgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAJqZmcD//3//UHfWvv//f/+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAJqZmUD//39/UHfWPv//f3+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMPVstNC44MDAwMDAyZSswMCAtMy40MDI4MjM1ZSszOCAtNC4xODg3OTAzZS0wMSAtMy40MDI4MjM1ZSszOF2UjAloaWdoX3JlcHKUjDlbNC44MDAwMDAyZSswMCAzLjQwMjgyMzVlKzM4IDQuMTg4NzkwM2UtMDEgMy40MDI4MjM1ZSszOF2UjApfbnBfcmFuZG9tlE51Yi4=",
65
+ "dtype": "float32",
66
+ "bounded_below": "[ True True True True]",
67
+ "bounded_above": "[ True True True True]",
68
+ "_shape": [
69
+ 4
70
+ ],
71
+ "low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
72
+ "high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
73
+ "low_repr": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
74
+ "high_repr": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
79
+ ":serialized:": "gAWVpQEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAgAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooRcVasbyqTJexHUS/+EVKUkwCMA2luY5SKEelR3FS2n60tHb2SMiRvzoQAdYwKaGFzX3VpbnQzMpRLAYwIdWludGVnZXKUigVzMBi5AHVidWIu",
80
+ "n": "2",
81
+ "start": "0",
82
+ "_shape": [],
83
+ "dtype": "int64",
84
+ "_np_random": "Generator(PCG64)"
85
+ },
86
+ "n_envs": 1,
87
+ "buffer_size": 1000000,
88
+ "batch_size": 32,
89
+ "learning_starts": 50000,
90
+ "tau": 1.0,
91
+ "gamma": 0.99,
92
+ "gradient_steps": 1,
93
+ "optimize_memory_usage": false,
94
+ "replay_buffer_class": {
95
+ ":type:": "<class 'abc.ABCMeta'>",
96
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
97
+ "__module__": "stable_baselines3.common.buffers",
98
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
99
+ "__init__": "<function ReplayBuffer.__init__ at 0x2a0c50f70>",
100
+ "add": "<function ReplayBuffer.add at 0x2a0c60040>",
101
+ "sample": "<function ReplayBuffer.sample at 0x2a0c600d0>",
102
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x2a0c60160>",
103
+ "_maybe_cast_dtype": "<staticmethod object at 0x2a0c5e280>",
104
+ "__abstractmethods__": "frozenset()",
105
+ "_abc_impl": "<_abc._abc_data object at 0x2a0c5f300>"
106
+ },
107
+ "replay_buffer_kwargs": {},
108
+ "train_freq": {
109
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
110
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
111
+ },
112
+ "use_sde_at_warmup": false,
113
+ "exploration_initial_eps": 1.0,
114
+ "exploration_final_eps": 0.05,
115
+ "exploration_fraction": 0.1,
116
+ "target_update_interval": 10000,
117
+ "_n_calls": 100000,
118
+ "max_grad_norm": 10,
119
+ "exploration_rate": 0.05,
120
+ "lr_schedule": {
121
+ ":type:": "<class 'function'>",
122
+ ":serialized:": "gAWVIgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMhi9Vc2Vycy9zdWJoYXNpc2gvRG9jdW1lbnRzL2lOZXVyb24vUmVpbmZvcmNlbWVudC1MZWFybmluZy9kcmwtMmVkL3JsX2RybC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIyGL1VzZXJzL3N1Ymhhc2lzaC9Eb2N1bWVudHMvaU5ldXJvbi9SZWluZm9yY2VtZW50LUxlYXJuaW5nL2RybC0yZWQvcmxfZHJsL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
123
+ },
124
+ "batch_norm_stats": [],
125
+ "batch_norm_stats_target": [],
126
+ "exploration_schedule": {
127
+ ":type:": "<class 'function'>",
128
+ ":serialized:": "gAWVxgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyxkAXwAGACIAWsEchCIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAZABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIyGL1VzZXJzL3N1Ymhhc2lzaC9Eb2N1bWVudHMvaU5ldXJvbi9SZWluZm9yY2VtZW50LUxlYXJuaW5nL2RybC0yZWQvcmxfZHJsL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtxQwYAAQwBBAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjIYvVXNlcnMvc3ViaGFzaXNoL0RvY3VtZW50cy9pTmV1cm9uL1JlaW5mb3JjZW1lbnQtTGVhcm5pbmcvZHJsLTJlZC9ybF9kcmwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlGgdKVKUaB0pUpSHlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCN9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoCowIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgudYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP6mZmZmZmZqFlFKUaDZHP7mZmZmZmZqFlFKUaDZHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
129
+ }
130
+ }
DQN-CartPole-v1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:efccc72b2b3a7b63f657694038e3aa8fbc6ef00d6772050e0951fa16cd72ced3
3
+ size 545952
DQN-CartPole-v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01125850767ff38a96281721cc356f6012ae6e7495e6dd58ab781a43313dc70d
3
+ size 545074
DQN-CartPole-v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ebdad4b9cfe9cd22a3abadb5623bf7bb1f6eb2e408740245eb3f2044b0adc018
3
+ size 864
DQN-CartPole-v1/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: macOS-14.2.1-arm64-arm-64bit Darwin Kernel Version 23.2.0: Wed Nov 15 21:53:34 PST 2023; root:xnu-10002.61.3~2/RELEASE_ARM64_T8103
2
+ - Python: 3.9.19
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.2.1
5
+ - GPU Enabled: False
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 3.0.0
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.26.2
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - CartPole-v1
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: DQN
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: CartPole-v1
16
+ type: CartPole-v1
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 213.40 +/- 20.11
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **DQN** Agent playing **CartPole-v1**
25
+ This is a trained model of a **DQN** agent playing **CartPole-v1**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x2a0c7a700>", "_build": "<function DQNPolicy._build at 0x2a0c7a790>", "make_q_net": "<function DQNPolicy.make_q_net at 0x2a0c7a820>", "forward": "<function DQNPolicy.forward at 0x2a0c7a8b0>", "_predict": "<function DQNPolicy._predict at 0x2a0c7a940>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x2a0c7a9d0>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x2a0c7aa60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x2a0c7df00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVUQAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARSZUxVlJOUjAhuZXRfYXJjaJRdlChNAAFNAAFldS4=", "activation_fn": "<class 'torch.nn.modules.activation.ReLU'>", "net_arch": [256, 256]}, "num_timesteps": 100000, "_total_timesteps": 100000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1712635922969288000, "learning_rate": 0.0001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAOEzGj+IzA4/r5l2PTgeWz6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLBIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAOhXFj+n9kA/dJl+PU/6x72UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLBIaUjAFDlHSUUpQu"}, "_episode_num": 4160, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCgAAAAAAACMAWyUSwyMAXSUR0BAE0z9CNS7dX2UKGgGR0AkAAAAAAAAaAdLCmgIR0BAFLy1/lQudX2UKGgGR0A6AAAAAAAAaAdLGmgIR0BAGKD9OymidX2UKGgGR0BjgAAAAAAAaAdLnGgIR0BALZY5ksjFdX2UKGgGR0BxMAAAAAAAaAdNEwFoCEdAQEigh8pkPXV9lChoBkdAaaAAAAAAAGgHS81oCEdAQF52+wkgOnV9lChoBkdAamAAAAAAAGgHS9NoCEdAQHEEHMUypXV9lChoBkdAbAAAAAAAAGgHS+BoCEdAQIYflp48l3V9lChoBkdAb+AAAAAAAGgHS/9oCEdAQJ8LjPv8ZXV9lChoBkdAYWAAAAAAAGgHS4toCEdAQKqdz4k/r3V9lChoBkdAZAAAAAAAAGgHS6BoCEdAQLggaFVT73V9lChoBkdAZEAAAAAAAGgHS6JoCEdAQMb/ffoA4nV9lChoBkdAQwAAAAAAAGgHSyZoCEdAQMrxy4nWrnV9lChoBkdATwAAAAAAAGgHSz5oCEdAQNA11nuiOHV9lChoBkdAbaAAAAAAAGgHS+1oCEdAQOwbwSamXXV9lChoBkdAY8AAAAAAAGgHS55oCEdAQPsxyn1nNHV9lChoBkdAZcAAAAAAAGgHS65oCEdAQQoyEcsDn3V9lChoBkdAZaAAAAAAAGgHS61oCEdAQRlmrbQC0XV9lChoBkdAbEAAAAAAAGgHS+JoCEdAQS1f5ULlWHV9lChoBkdAYoAAAAAAAGgHS5RoCEdAQTtC3PRiPXV9lChoBkdAbCAAAAAAAGgHS+FoCEdAQUz8P4EfT3V9lChoBkdAb+AAAAAAAGgHS/9oCEdAQWOjGkvboXV9lChoBkdAQgAAAAAAAGgHSyRoCEdAQWatT1kDp3V9lChoBkdAZ2AAAAAAAGgHS7toCEdAQXduLrHEM3V9lChoBkdAb2AAAAAAAGgHS/toCEdAQZqOJcgQpXV9lChoBkdAY2AAAAAAAGgHS5toCEdAQbD4YaYNRXV9lChoBkdAZ2AAAAAAAGgHS7toCEdAQceqHXVbzXV9lChoBkdAZwAAAAAAAGgHS7hoCEdAQdhNwiqyW3V9lChoBkdAbyAAAAAAAGgHS/loCEdAQe5TfixVyXV9lChoBkdAaqAAAAAAAGgHS9VoCEdAQgBkK/mDDnV9lChoBkdAbCAAAAAAAGgHS+FoCEdAQhUGVzIV/XV9lChoBkdASAAAAAAAAGgHSzBoCEdAQhkWEbo8p3V9lChoBkdAMwAAAAAAAGgHSxNoCEdAQhpLmITGpHV9lChoBkdAOAAAAAAAAGgHSxhoCEdAQhyVUuL743V9lChoBkdANQAAAAAAAGgHSxVoCEdAQh5tcfNiY3V9lChoBkdAQwAAAAAAAGgHSyZoCEdAQiIKKHfuTnV9lChoBkdAZ+AAAAAAAGgHS79oCEdAQjLI7vG6w3V9lChoBkdAaQAAAAAAAGgHS8hoCEdAQkn+6y0KJHV9lChoBkdAYKAAAAAAAGgHS4VoCEdAQldD+irT6XV9lChoBkdAZoAAAAAAAGgHS7RoCEdAQma4OMERrnV9lChoBkdAZWAAAAAAAGgHS6toCEdAQna24NI9T3V9lChoBkdAYuAAAAAAAGgHS5doCEdAQoOuNgjQiXV9lChoBkdAbSAAAAAAAGgHS+loCEdAQpep4rz5GnV9lChoBkdAZwAAAAAAAGgHS7hoCEdAQqd3KSxJNHV9lChoBkdAZgAAAAAAAGgHS7BoCEdAQrh5Rjz7M3V9lChoBkdAaKAAAAAAAGgHS8VoCEdAQsqdc0Ltu3V9lChoBkdAaIAAAAAAAGgHS8RoCEdAQtqySmqHXXV9lChoBkdAPQAAAAAAAGgHSx1oCEdAQt1BBzFMqXV9lChoBkdANAAAAAAAAGgHSxRoCEdAQt7J2dNFjXV9lChoBkdANwAAAAAAAGgHSxdoCEdAQuBe5WilBXV9lChoBkdAZsAAAAAAAGgHS7ZoCEdAQvCXt0FKTXV9lChoBkdActAAAAAAAGgHTS0BaAhHQEMR5WRzRx91fZQoaAZHQGxAAAAAAABoB0viaAhHQEMm0TDfm9x1fZQoaAZHQGhAAAAAAABoB0vCaAhHQEM3x5s0pEx1fZQoaAZHQGVgAAAAAABoB0uraAhHQENGK9f1Hvt1fZQoaAZHQGOAAAAAAABoB0ucaAhHQENTzBhx5s11fZQoaAZHQGsgAAAAAABoB0vZaAhHQENnzWf9P1t1fZQoaAZHQGXgAAAAAABoB0uvaAhHQEN3uqFRHgB1fZQoaAZHQGhgAAAAAABoB0vDaAhHQEOJFS88La51fZQoaAZHQGMAAAAAAABoB0uYaAhHQEOVqQiiZfF1fZQoaAZHQGhgAAAAAABoB0vDaAhHQEOnV7x/d691fZQoaAZHQGegAAAAAABoB0u9aAhHQEO4tDD0lJJ1fZQoaAZHQGzgAAAAAABoB0vnaAhHQEPZObiIcip1fZQoaAZHQGqAAAAAAABoB0vUaAhHQEPvkWAPNFB1fZQoaAZHQGoAAAAAAABoB0vQaAhHQEQDLA57w8Z1fZQoaAZHQHqwAAAAAABoB02rAWgIR0BELK94/u9fdX2UKGgGR0BwkAAAAAAAaAdNCQFoCEdAREW4Vh1DB3V9lChoBkdAa8AAAAAAAGgHS95oCEdARFw77sOXmnV9lChoBkdAayAAAAAAAGgHS9loCEdARHHnSv1UVHV9lChoBkdAYuAAAAAAAGgHS5doCEdARIl8ma6ST3V9lChoBkdAZ6AAAAAAAGgHS71oCEdARKBMFlkH2XV9lChoBkdAbiAAAAAAAGgHS/FoCEdARLlr9ETg23V9lChoBkdAaMAAAAAAAGgHS8ZoCEdARM4v114gR3V9lChoBkdAayAAAAAAAGgHS9loCEdAROB1klNUO3V9lChoBkdAZ4AAAAAAAGgHS7xoCEdARPAwIt16mnV9lChoBkdAZwAAAAAAAGgHS7hoCEdARQFJ4B3iaXV9lChoBkdAcqAAAAAAAGgHTSoBaAhHQEUZs3yZrpJ1fZQoaAZHQG8gAAAAAABoB0v5aAhHQEUu0rsjVx11fZQoaAZHQGWgAAAAAABoB0utaAhHQEVDVqesgdR1fZQoaAZHQGmgAAAAAABoB0vNaAhHQEVYQ5FPSD11fZQoaAZHQGbgAAAAAABoB0u3aAhHQEVnJHRTjvN1fZQoaAZHQGgAAAAAAABoB0vAaAhHQEV3sYVIqb11fZQoaAZHQGugAAAAAABoB0vdaAhHQEWKtg8bJfZ1fZQoaAZHQGTAAAAAAABoB0umaAhHQEWZZElVtGd1fZQoaAZHQGLgAAAAAABoB0uXaAhHQEWl6VMVUMp1fZQoaAZHQG1AAAAAAABoB0vqaAhHQEW5zbvgFX91fZQoaAZHQHaAAAAAAABoB01oAWgIR0BF2w+2VmjCdX2UKGgGR0BpIAAAAAAAaAdLyWgIR0BF7RcE/0NCdX2UKGgGR0BsgAAAAAAAaAdL5GgIR0BGACKBNEgGdX2UKGgGR0BkAAAAAAAAaAdLoGgIR0BGFFIEr5IpdX2UKGgGR0BqAAAAAAAAaAdL0GgIR0BGJ0QTVUdadX2UKGgGR0BqwAAAAAAAaAdL1mgIR0BGOK4x1xKhdX2UKGgGR0BoYAAAAAAAaAdLw2gIR0BGSP4M4LkTdX2UKGgGR0BykAAAAAAAaAdNKQFoCEdARmKk43m3fHV9lChoBkdAaEAAAAAAAGgHS8JoCEdARnNI7Njbz3V9lChoBkdAauAAAAAAAGgHS9doCEdARoX60pmVaHV9lChoBkdAaOAAAAAAAGgHS8doCEdARpbLU1AJLXV9lChoBkdAfJAAAAAAAGgHTckBaAhHQEa+PGyX2M91fZQoaAZHQHFgAAAAAABoB00WAWgIR0BG1ceS0Sh8dX2UKGgGR0BpYAAAAAAAaAdLy2gIR0BG76WX1J18dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 12500, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVFgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAJqZmcD//3//UHfWvv//f/+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAJqZmUD//39/UHfWPv//f3+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMPVstNC44MDAwMDAyZSswMCAtMy40MDI4MjM1ZSszOCAtNC4xODg3OTAzZS0wMSAtMy40MDI4MjM1ZSszOF2UjAloaWdoX3JlcHKUjDlbNC44MDAwMDAyZSswMCAzLjQwMjgyMzVlKzM4IDQuMTg4NzkwM2UtMDEgMy40MDI4MjM1ZSszOF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]", "high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]", "low_repr": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]", "high_repr": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVpQEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAgAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooRcVasbyqTJexHUS/+EVKUkwCMA2luY5SKEelR3FS2n60tHb2SMiRvzoQAdYwKaGFzX3VpbnQzMpRLAYwIdWludGVnZXKUigVzMBi5AHVidWIu", "n": "2", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "buffer_size": 1000000, "batch_size": 32, "learning_starts": 50000, "tau": 1.0, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x2a0c50f70>", "add": "<function ReplayBuffer.add at 0x2a0c60040>", "sample": "<function ReplayBuffer.sample at 0x2a0c600d0>", "_get_samples": "<function ReplayBuffer._get_samples at 0x2a0c60160>", "_maybe_cast_dtype": "<staticmethod object at 0x2a0c5e280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x2a0c5f300>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.05, "exploration_fraction": 0.1, "target_update_interval": 10000, "_n_calls": 100000, "max_grad_norm": 10, "exploration_rate": 0.05, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVIgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMhi9Vc2Vycy9zdWJoYXNpc2gvRG9jdW1lbnRzL2lOZXVyb24vUmVpbmZvcmNlbWVudC1MZWFybmluZy9kcmwtMmVkL3JsX2RybC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIyGL1VzZXJzL3N1Ymhhc2lzaC9Eb2N1bWVudHMvaU5ldXJvbi9SZWluZm9yY2VtZW50LUxlYXJuaW5nL2RybC0yZWQvcmxfZHJsL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "batch_norm_stats": [], "batch_norm_stats_target": [], "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyxkAXwAGACIAWsEchCIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAZABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIyGL1VzZXJzL3N1Ymhhc2lzaC9Eb2N1bWVudHMvaU5ldXJvbi9SZWluZm9yY2VtZW50LUxlYXJuaW5nL2RybC0yZWQvcmxfZHJsL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtxQwYAAQwBBAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjIYvVXNlcnMvc3ViaGFzaXNoL0RvY3VtZW50cy9pTmV1cm9uL1JlaW5mb3JjZW1lbnQtTGVhcm5pbmcvZHJsLTJlZC9ybF9kcmwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlGgdKVKUaB0pUpSHlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCN9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoCowIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgudYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP6mZmZmZmZqFlFKUaDZHP7mZmZmZmZqFlFKUaDZHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "macOS-14.2.1-arm64-arm-64bit Darwin Kernel Version 23.2.0: Wed Nov 15 21:53:34 PST 2023; root:xnu-10002.61.3~2/RELEASE_ARM64_T8103", "Python": "3.9.19", "Stable-Baselines3": "2.1.0", "PyTorch": "2.2.1", "GPU Enabled": "False", "Numpy": "1.26.4", "Cloudpickle": "3.0.0", "Gymnasium": "0.29.1", "OpenAI Gym": "0.26.2"}}
replay.mp4 ADDED
Binary file (78.8 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 213.4, "std_reward": 20.110693672770218, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-04-09T09:51:32.824633"}