SubhasishSaha's picture
Push to Hub
bf5d3fd verified
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
"__module__": "stable_baselines3.dqn.policies",
"__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}",
"__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function DQNPolicy.__init__ at 0x3237bb5e0>",
"_build": "<function DQNPolicy._build at 0x3237bb670>",
"make_q_net": "<function DQNPolicy.make_q_net at 0x3237bb700>",
"forward": "<function DQNPolicy.forward at 0x3237bb790>",
"_predict": "<function DQNPolicy._predict at 0x3237bb820>",
"_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x3237bb8b0>",
"set_training_mode": "<function DQNPolicy.set_training_mode at 0x3237bb940>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x3237bfcc0>"
},
"verbose": 1,
"policy_kwargs": {
":type:": "<class 'dict'>",
":serialized:": "gAWVUQAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARSZUxVlJOUjAhuZXRfYXJjaJRdlChNAAFNAAFldS4=",
"activation_fn": "<class 'torch.nn.modules.activation.ReLU'>",
"net_arch": [
256,
256
]
},
"num_timesteps": 100000,
"_total_timesteps": 100000.0,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1713087975250453000,
"learning_rate": 0.0001,
"tensorboard_log": null,
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVhQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAD5zEr0qVn28mzeyPAriZryUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLBIaUjAFDlHSUUpQu"
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
},
"_last_original_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVhQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAOs3Ab2JZVe+92uFPGH8iz6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLBIaUjAFDlHSUUpQu"
},
"_episode_num": 3870,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": 0.0,
"_stats_window_size": 100,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWV+wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCQAAAAAAACMAWyUSwqMAXSUR0A3SBrN4Z/DdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0A3SZbpu/DcdX2UKGgGR0BsgAAAAAAAaAdL5GgIR0A3b6/qPfbcdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0A3cj7ALy+YdX2UKGgGR0BigAAAAAAAaAdLlGgIR0A3jMQmNR3vdX2UKGgGR0BmAAAAAAAAaAdLsGgIR0A3qvi97F85dX2UKGgGR0BaQAAAAAAAaAdLaWgIR0A3vQqI7/4qdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0A3v1uzhP0qdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0A3wLXtjTa1dX2UKGgGR0AiAAAAAAAAaAdLCWgIR0A3wlzltCRfdX2UKGgGR0AgAAAAAAAAaAdLCGgIR0A3w6+nIhhZdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0A3xRLsa86FdX2UKGgGR0BlwAAAAAAAaAdLrmgIR0A34vpyIYWMdX2UKGgGR0Bh4AAAAAAAaAdLj2gIR0A3+9ETg2qDdX2UKGgGR0BtAAAAAAAAaAdL6GgIR0A4J5vLowEhdX2UKGgGR0BvoAAAAAAAaAdL/WgIR0A4YiV0Lc9GdX2UKGgGR0BiIAAAAAAAaAdLkWgIR0A4fd/rjYI0dX2UKGgGR0BxwAAAAAAAaAdNHAFoCEdAOLHyup0fYHV9lChoBkdAVAAAAAAAAGgHS1BoCEdAOL+6mO2iL3V9lChoBkdAbaAAAAAAAGgHS+1oCEdAOOmyHEdeY3V9lChoBkdAb2AAAAAAAGgHS/toCEdAORSbUgB91HV9lChoBkdAYeAAAAAAAGgHS49oCEdAOS3iWE9MbnV9lChoBkdAbsAAAAAAAGgHS/ZoCEdAOVmB4D9wWHV9lChoBkdAcjAAAAAAAGgHTSMBaAhHQDmLYmLLpzN1fZQoaAZHQHIQAAAAAABoB00hAWgIR0A5vRzRx95RdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAOiNtdiUgS3V9lChoBkdAbqAAAAAAAGgHS/VoCEdAOlHQ6ZH/cXV9lChoBkdAZmAAAAAAAGgHS7NoCEdAOnETHsC1Z3V9lChoBkdAaIAAAAAAAGgHS8RoCEdAOpOC04R283V9lChoBkdAcjAAAAAAAGgHTSMBaAhHQDrGXXyy2QZ1fZQoaAZHQGygAAAAAABoB0vlaAhHQDruLehwl0J1fZQoaAZHQGGAAAAAAABoB0uMaAhHQDsGjafzz3B1fZQoaAZHQGmAAAAAAABoB0vMaAhHQDsof0VafSR1fZQoaAZHQHEAAAAAAABoB00QAWgIR0A7aEVWS2YwdX2UKGgGR0BtwAAAAAAAaAdL7mgIR0A7lpMYdhiLdX2UKGgGR0BwwAAAAAAAaAdNDAFoCEdAO8X225QP7XV9lChoBkdAaYAAAAAAAGgHS8xoCEdAO+/BJqZc9nV9lChoBkdAYsAAAAAAAGgHS5ZoCEdAPApu63AmA3V9lChoBkdAaEAAAAAAAGgHS8JoCEdAPCx/Aj6eoXV9lChoBkdAbkAAAAAAAGgHS/JoCEdAPFqQNkOI7HV9lChoBkdAcPAAAAAAAGgHTQ8BaAhHQDyKMERradt1fZQoaAZHQGCgAAAAAABoB0uFaAhHQDyhHlOoHcF1fZQoaAZHQHDwAAAAAABoB00PAWgIR0A80iIcinpCdX2UKGgGR0BxAAAAAAAAaAdNEAFoCEdAPQklAu7HyXV9lChoBkdAcUAAAAAAAGgHTRQBaAhHQD1AZiuuA7R1fZQoaAZHQG3AAAAAAABoB0vuaAhHQD1p+CsfaHt1fZQoaAZHQGbAAAAAAABoB0u2aAhHQD2L4Kx9oex1fZQoaAZHQGTAAAAAAABoB0umaAhHQD2n7P6be/J1fZQoaAZHQGCgAAAAAABoB0uFaAhHQD290MgEEDB1fZQoaAZHQD0AAAAAAABoB0sdaAhHQD3EC4jKPn11fZQoaAZHQGuAAAAAAABoB0vcaAhHQD3o5WBBiTd1fZQoaAZHQGVgAAAAAABoB0uraAhHQD4GHuZ1FH91fZQoaAZHQG6AAAAAAABoB0v0aAhHQD4xiz9jwx51fZQoaAZHQGngAAAAAABoB0vPaAhHQD5Z9Brvb491fZQoaAZHQHAwAAAAAABoB00DAWgIR0A+krQgLZzxdX2UKGgGR0By4AAAAAAAaAdNLgFoCEdAPspwbVBlc3V9lChoBkdAaSAAAAAAAGgHS8loCEdAPvf9xZMcqHV9lChoBkdAcMAAAAAAAGgHTQwBaAhHQD8nmQr+YMR1fZQoaAZHQFwAAAAAAABoB0twaAhHQD866QNkOI91fZQoaAZHQG8AAAAAAABoB0v4aAhHQD9oDq4YrJ91fZQoaAZHQHEwAAAAAABoB00TAWgIR0A/lnRLK3d9dX2UKGgGR0Bj4AAAAAAAaAdLn2gIR0A/sj3Ehq0udX2UKGgGR0BvIAAAAAAAaAdL+WgIR0A/3iGFi8WcdX2UKGgGR0BooAAAAAAAaAdLxWgIR0BAABGYrrgPdX2UKGgGR0BpYAAAAAAAaAdLy2gIR0BAErGR3eN2dX2UKGgGR0ByoAAAAAAAaAdNKgFoCEdAQCud5IH1OHV9lChoBkdAZ+AAAAAAAGgHS79oCEdAQEU6vJRwZXV9lChoBkdAfDAAAAAAAGgHTcMBaAhHQEBtRb8m8dx1fZQoaAZHQHJAAAAAAABoB00kAWgIR0BAhrELpiZwdX2UKGgGR0Bx0AAAAAAAaAdNHQFoCEdAQJ7eGfwqiHV9lChoBkdAZwAAAAAAAGgHS7hoCEdAQK5TIeYD1XV9lChoBkdAcdAAAAAAAGgHTR0BaAhHQEDIOMl1KXh1fZQoaAZHQG9gAAAAAABoB0v7aAhHQEDihIOH3111fZQoaAZHQG7AAAAAAABoB0v2aAhHQED5ShrWRRx1fZQoaAZHQHIAAAAAAABoB00gAWgIR0BBEzposZpBdX2UKGgGR0BrwAAAAAAAaAdL3mgIR0BBKLR8c+7ldX2UKGgGR0B0IAAAAAAAaAdNQgFoCEdAQU3nwG4ZuXV9lChoBkdAZAAAAAAAAGgHS6BoCEdAQV/irDIiknV9lChoBkdAZyAAAAAAAGgHS7loCEdAQXLxsl9jPXV9lChoBkdAaeAAAAAAAGgHS89oCEdAQYVPk7wKB3V9lChoBkdAaaAAAAAAAGgHS81oCEdAQZg8jiXIEXV9lChoBkdAYuAAAAAAAGgHS5doCEdAQaU29+PRzHV9lChoBkdAaUAAAAAAAGgHS8poCEdAQbb7Ikqto3V9lChoBkdAYKAAAAAAAGgHS4VoCEdAQcJiRW912nV9lChoBkdAZGAAAAAAAGgHS6NoCEdAQdBbSqlxfnV9lChoBkdAa4AAAAAAAGgHS9xoCEdAQeNYB/7SA3V9lChoBkdAb0AAAAAAAGgHS/poCEdAQfn/HYHxBnV9lChoBkdAcmAAAAAAAGgHTSYBaAhHQEIX67/XGwR1fZQoaAZHQGmAAAAAAABoB0vMaAhHQEIrQhwEQoV1fZQoaAZHQGbAAAAAAABoB0u2aAhHQEI9GVAzHjp1fZQoaAZHQHCAAAAAAABoB00IAWgIR0BCVTMJQcghdX2UKGgGR0BmIAAAAAAAaAdLsWgIR0BCZfFR51NhdX2UKGgGR0BwwAAAAAAAaAdNDAFoCEdAQnxh8YyftnV9lChoBkdAa8AAAAAAAGgHS95oCEdAQpBFTefqYHV9lChoBkdAbAAAAAAAAGgHS+BoCEdAQqNXko4MnnV9lChoBkdAb0AAAAAAAGgHS/poCEdAQrkbYK6WgXV9lChoBkdAcsAAAAAAAGgHTSwBaAhHQELTvfj0cwR1fZQoaAZHQGqAAAAAAABoB0vUaAhHQELmMl1KXfJ1fZQoaAZHQHAwAAAAAABoB00DAWgIR0BC+4/3WWhRdX2UKGgGR0BswAAAAAAAaAdL5mgIR0BDFbWVeKKpdWUu"
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 12500,
"observation_space": {
":type:": "<class 'gymnasium.spaces.box.Box'>",
":serialized:": "gAWVFgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAJqZmcD//3//UHfWvv//f/+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAJqZmUD//39/UHfWPv//f3+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMPVstNC44MDAwMDAyZSswMCAtMy40MDI4MjM1ZSszOCAtNC4xODg3OTAzZS0wMSAtMy40MDI4MjM1ZSszOF2UjAloaWdoX3JlcHKUjDlbNC44MDAwMDAyZSswMCAzLjQwMjgyMzVlKzM4IDQuMTg4NzkwM2UtMDEgMy40MDI4MjM1ZSszOF2UjApfbnBfcmFuZG9tlE51Yi4=",
"dtype": "float32",
"bounded_below": "[ True True True True]",
"bounded_above": "[ True True True True]",
"_shape": [
4
],
"low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
"high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
"low_repr": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
"high_repr": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
":serialized:": "gAWVpAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAgAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooQDnWcOQbNSf8IXpIt/BgeJowDaW5jlIoRbS2nfyIeZJ+nBuvILybEggB1jApoYXNfdWludDMylEsBjAh1aW50ZWdlcpSKBeqrbIMAdWJ1Yi4=",
"n": "2",
"start": "0",
"_shape": [],
"dtype": "int64",
"_np_random": "Generator(PCG64)"
},
"n_envs": 1,
"buffer_size": 1000000,
"batch_size": 32,
"learning_starts": 50000,
"tau": 1.0,
"gamma": 0.99,
"gradient_steps": 1,
"optimize_memory_usage": false,
"replay_buffer_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
"__module__": "stable_baselines3.common.buffers",
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
"__init__": "<function ReplayBuffer.__init__ at 0x323793e50>",
"add": "<function ReplayBuffer.add at 0x323793ee0>",
"sample": "<function ReplayBuffer.sample at 0x323793f70>",
"_get_samples": "<function ReplayBuffer._get_samples at 0x3237a0040>",
"_maybe_cast_dtype": "<staticmethod object at 0x32379f250>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x3237a1080>"
},
"replay_buffer_kwargs": {},
"train_freq": {
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
},
"use_sde_at_warmup": false,
"exploration_initial_eps": 1.0,
"exploration_final_eps": 0.05,
"exploration_fraction": 0.1,
"target_update_interval": 10000,
"_n_calls": 100000,
"max_grad_norm": 10,
"exploration_rate": 0.05,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVIgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMhi9Vc2Vycy9zdWJoYXNpc2gvRG9jdW1lbnRzL2lOZXVyb24vUmVpbmZvcmNlbWVudC1MZWFybmluZy9kcmwtMmVkL3JsX2RybC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIyGL1VzZXJzL3N1Ymhhc2lzaC9Eb2N1bWVudHMvaU5ldXJvbi9SZWluZm9yY2VtZW50LUxlYXJuaW5nL2RybC0yZWQvcmxfZHJsL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"batch_norm_stats": [],
"batch_norm_stats_target": [],
"exploration_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVxgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyxkAXwAGACIAWsEchCIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAZABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIyGL1VzZXJzL3N1Ymhhc2lzaC9Eb2N1bWVudHMvaU5ldXJvbi9SZWluZm9yY2VtZW50LUxlYXJuaW5nL2RybC0yZWQvcmxfZHJsL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtxQwYAAQwBBAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjIYvVXNlcnMvc3ViaGFzaXNoL0RvY3VtZW50cy9pTmV1cm9uL1JlaW5mb3JjZW1lbnQtTGVhcm5pbmcvZHJsLTJlZC9ybF9kcmwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlGgdKVKUaB0pUpSHlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCN9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoCowIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgudYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP6mZmZmZmZqFlFKUaDZHP7mZmZmZmZqFlFKUaDZHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
}
}