metadata
license: apache-2.0
tags:
- merge
- mergekit
- lazymergekit
- gordicaleksa/YugoGPT
- mlabonne/AlphaMonarch-7B
model-index:
- name: Tito-7B-slerp
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 68.09
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Stopwolf/Tito-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 86.38
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Stopwolf/Tito-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.01
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Stopwolf/Tito-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 57.01
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Stopwolf/Tito-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 81.69
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Stopwolf/Tito-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.61
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Stopwolf/Tito-7B-slerp
name: Open LLM Leaderboard
Tito-7B-slerp
Tito-7B-slerp is a merge of the following models using mergekit:
🧩 Configuration
slices:
- sources:
- model: gordicaleksa/YugoGPT
layer_range: [0, 32]
- model: mlabonne/AlphaMonarch-7B
layer_range: [0, 32]
merge_method: slerp
base_model: mlabonne/AlphaMonarch-7B
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.6
dtype: bfloat16
Results
Evaluations on Serbian LLM eval suite (or rather, performance and knowledge of Serbian):
ARC-E | ARC-C | Hellaswag | BoolQ | Winogrande | OpenbookQA | PiQA | NQ Open | TriviaQA | Avg. | |
---|---|---|---|---|---|---|---|---|---|---|
Zamfir-7B | 51.85 | 32.25 | 46.03 | 75.59 | 62.59 | 26.00 | 66.81 | 16.09 | 36.11 | 45.92 |
Mustra-7B | 52.95 | 33.70 | 45.89 | 77.55 | 64.17 | 30.60 | 67.25 | 15.40 | 34.84 | 46.93 |
Tito-7B | 55.43 | 34.73 | 48.19 | 77.37 | 65.27 | 30.00 | 67.30 | 16.7 | 35.38 | 47.82 |
YugoGPT | 57.79 | 34.73 | 49.89 | 69.45 | 64.56 | 28.20 | 72.03 | 15.82 | 36.14 | 47.62 |
Here, all benchmarks were done 0-shot, on the exception of NQ Open and TriviaQA which were done in 5-shot manner, in order to be comparable to Mistral paper.
If we try to replicate OpenLLM Leaderboard results on available Serbian datasets (running an appropriate amount of shots instead of 0), we get:
ARC | Hellaswag | Winogrande | TruthfulQA | Avg. | |
---|---|---|---|---|---|
Tito-7B | 47.27 | - | 69.93 | 57.48 | 58.23 |
Perucac-7B | 49.74 | - | 71.98 | 56.03 | 59.25 |
YugoGPT | 44.03 | - | 70.64 | 48.06 | 54.24 |
Llama3-8B | 42.24 | - | 61.25 | 51.08 | 51.52 |
SambaLingo | 37.88 | - | 61.48 | 47.23 | 48.86 |
Note that YugoGPT, Llama3 and SambaLingo are all base models, unlike Tito and Perucac.
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Tito | YugoGPT |
---|---|---|
Avg. | 70.13 | 57.34 |
AI2 Reasoning Challenge (25-Shot) | 68.09 | 58.10 |
HellaSwag (10-Shot) | 86.38 | 81.44 |
MMLU (5-Shot) | 64.01 | 60.68 |
TruthfulQA (0-shot) | 57.01 | 36.60 |
Winogrande (5-shot) | 81.69 | 76.56 |
GSM8k (5-shot) | 63.61 | 30.70 |