StepLaw-N_1.0B-D_1.0B
Collection
Models with 1.0B parameters trained with 1.0B tokens. Architecture: H=2048, FFN=8192, Heads=16, Layers=16.
•
40 items
•
Updated
This model is part of the StepLaw-N_1.0B-D_1.0B collection.
StepLaw models are trained with various hyperparameter settings to enable research on scaling laws and hyperparameter optimization. This specific model was trained with learning rate 3.453e-04 and batch size 262144 for 7629 iterations, using a total of 2.0B training tokens.
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "StepLaw/StepLaw-N_1.0B-D_1.0B-LR3.453e-04-BS262144"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
# Generate text
inputs = tokenizer("A long time ago in a galaxy far, far away", return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))