VerA-Etheria-55b

image/png

An attempt to make a functional goliath style merge with One yi-34b-200k model Merged to make a [Etheria] 55b-200k Model, this is Version A or VerA, it is a single Model Passthrough merge.

Roadmap:

Depending on quality, I Might private the other Version. Then generate a sacrificial 55b and perform a 55b Dare ties merge or Slerp merge.

1: If the Dual Model Merge performs well I will make a direct inverse of the config then merge.

2: If the single model performs well I will generate a 55b of the most performant model then either Slerp or Dare ties merge.

3: If both models perform well, then I will complete both 1 & 2 then change the naming scheme to match each of the new models.

🧩 Configuration

dtype: bfloat16
slices:
- sources:
    - model: brucethemoose/Yi-34B-200K-DARE-megamerge-v8
      layer_range: [0, 14]
- sources:
    - model: brucethemoose/Yi-34B-200K-DARE-megamerge-v8
      layer_range: [7, 21]
- sources:
    - model: brucethemoose/Yi-34B-200K-DARE-megamerge-v8
      layer_range: [15, 29]
- sources:
    - model: brucethemoose/Yi-34B-200K-DARE-megamerge-v8
      layer_range: [22, 36]
- sources:
    - model: brucethemoose/Yi-34B-200K-DARE-megamerge-v8
      layer_range: [30, 44]
- sources:
    - model: brucethemoose/Yi-34B-200K-DARE-megamerge-v8
      layer_range: [37, 51]
- sources:
    - model: brucethemoose/Yi-34B-200K-DARE-megamerge-v8
      layer_range: [45, 59]
merge_method: passthrough

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "steelskull/VA-Etheria-55b"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
9
Safetensors
Model size
55.6B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for SteelStorage/VerA-Etheria-55b

Finetuned
(1)
this model
Quantizations
1 model