|
|
|
import argparse |
|
import json |
|
import math |
|
import os |
|
import os.path as osp |
|
import re |
|
import string |
|
import time |
|
|
|
import numpy as np |
|
import pandas as pd |
|
import torch |
|
import tqdm |
|
from huggingface_hub import snapshot_download |
|
from mmengine import mkdir_or_exist |
|
from mmengine.dist import (collect_results, get_dist_info, get_rank, init_dist, |
|
master_only) |
|
from mmengine.utils.dl_utils import set_multi_processing |
|
from peft import PeftModel |
|
from rich.console import Console |
|
from rich.table import Table |
|
from torch.utils.data import Dataset |
|
from transformers import (AutoModel, AutoModelForCausalLM, AutoTokenizer, |
|
BitsAndBytesConfig, AutoImageProcessor, |
|
Dinov2Model, GenerationConfig) |
|
|
|
from xtuner.dataset.utils import decode_base64_to_image, expand2square |
|
from xtuner.model.utils import LoadWoInit, prepare_inputs_labels_for_multimodal |
|
from xtuner.tools.utils import get_stop_criteria, is_cn_string |
|
from xtuner.utils import (DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX, |
|
PROMPT_TEMPLATE) |
|
|
|
TORCH_DTYPE_MAP = dict( |
|
fp16=torch.float16, bf16=torch.bfloat16, fp32=torch.float32, auto='auto') |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description='MMBench') |
|
parser.add_argument( |
|
'model_name_or_path', help='Hugging Face model name or path') |
|
parser.add_argument('--data-path', default=None, help='data path') |
|
parser.add_argument('--work-dir', help='the dir to save results') |
|
parser.add_argument('--llava', default=None, help='llava name or path') |
|
parser.add_argument( |
|
'--visual-encoder', default=None, help='visual encoder name or path') |
|
parser.add_argument( |
|
'--visual-select-layer', default=-2, help='visual select layer') |
|
parser.add_argument( |
|
'--prompt-template', |
|
choices=PROMPT_TEMPLATE.keys(), |
|
default=None, |
|
help='Specify a prompt template') |
|
parser.add_argument( |
|
'--stop-words', nargs='+', type=str, default=[], help='Stop words') |
|
parser.add_argument( |
|
'--torch-dtype', |
|
default='fp16', |
|
choices=TORCH_DTYPE_MAP.keys(), |
|
help='Override the default `torch.dtype` and load the model under ' |
|
'a specific `dtype`.') |
|
parser.add_argument( |
|
'--bits', |
|
type=int, |
|
choices=[4, 8, None], |
|
default=None, |
|
help='LLM bits') |
|
parser.add_argument( |
|
'--bot-name', type=str, default='BOT', help='Name for Bot') |
|
parser.add_argument( |
|
'--offload-folder', |
|
default=None, |
|
help='The folder in which to offload the model weights (or where the ' |
|
'model weights are already offloaded).') |
|
parser.add_argument( |
|
'--max-new-tokens', |
|
type=int, |
|
default=100, |
|
help='Maximum number of new tokens allowed in generated text') |
|
parser.add_argument( |
|
'--seed', |
|
type=int, |
|
default=0, |
|
help='Random seed for reproducible text generation') |
|
parser.add_argument( |
|
'--launcher', |
|
choices=['none', 'pytorch', 'slurm', 'mpi'], |
|
default='none', |
|
help='job launcher') |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
@master_only |
|
def master_print(msg): |
|
print(msg) |
|
|
|
|
|
class MMBenchDataset(Dataset): |
|
ABBRS = { |
|
'coarse_perception': 'CP', |
|
'finegrained_perception (instance-level)': 'FP-S', |
|
'finegrained_perception (cross-instance)': 'FP-C', |
|
'logic_reasoning': 'LR', |
|
'relation_reasoning': 'RR', |
|
'attribute_reasoning': 'AR', |
|
'sketch_reasoning': 'Sketch Reasoning', |
|
'scenery_building': 'Scenery & Building', |
|
'food_clothes': 'Food & Clothes', |
|
'historical_figure': 'Historical Figure', |
|
'traditional_show': 'Traditional Show', |
|
'calligraphy_painting': 'Calligraphy Painting', |
|
'cultural_relic': 'Cultural Relic' |
|
} |
|
|
|
def __init__(self, data_file): |
|
self.data_file = data_file |
|
self.df = pd.read_csv(data_file, sep='\t') |
|
self.split = 'dev' if 'answer' in self.df.iloc[0].keys() else 'test' |
|
self.has_l2_category = 'l2-category' in self.df.columns.to_list() |
|
|
|
def get_image(self, image): |
|
while len(image) < 16: |
|
image = self.df[self.df['index'] == int(image)]['image'].values |
|
assert len(image) == 1 |
|
image = image[0] |
|
image = decode_base64_to_image(image) |
|
return image |
|
|
|
def __len__(self): |
|
return len(self.df) |
|
|
|
def __getitem__(self, idx): |
|
index = self.df.iloc[idx]['index'] |
|
image = self.df.iloc[idx]['image'] |
|
image = self.get_image(image) |
|
question = self.df.iloc[idx]['question'] |
|
answer = self.df.iloc[idx]['answer'] if 'answer' in self.df.iloc[ |
|
0].keys() else None |
|
category = self.df.iloc[idx]['category'] |
|
|
|
options = { |
|
cand: self.load_from_df(idx, cand) |
|
for cand in string.ascii_uppercase |
|
if self.load_from_df(idx, cand) is not None |
|
} |
|
options_prompt = '' |
|
for key, item in options.items(): |
|
options_prompt += f'{key}. {item}\n' |
|
|
|
hint = self.load_from_df(idx, 'hint') |
|
data = { |
|
'img': image, |
|
'question': question, |
|
'answer': answer, |
|
'options': options_prompt, |
|
'category': category, |
|
'options_dict': options, |
|
'index': index, |
|
'context': hint, |
|
} |
|
if self.has_l2_category: |
|
data.update({'l2-category': self.df.iloc[idx]['l2-category']}) |
|
return data |
|
|
|
def load_from_df(self, idx, key): |
|
if key in self.df.iloc[idx] and not pd.isna(self.df.iloc[idx][key]): |
|
return self.df.iloc[idx][key] |
|
else: |
|
return None |
|
|
|
@master_only |
|
def eval_result(self, result_df, show=True): |
|
|
|
def calc_acc(df, group='category'): |
|
assert group in ['overall', 'category', 'l2-category'] |
|
if group == 'overall': |
|
res = {'Average': np.mean(df['hit'])} |
|
else: |
|
res = {} |
|
abilities = list(set(df[group])) |
|
abilities.sort() |
|
for ab in abilities: |
|
sub_df = df[df[group] == ab] |
|
ab = self.ABBRS[ab] if ab in self.ABBRS else ab |
|
res[ab] = np.mean(sub_df['hit']) |
|
return res |
|
|
|
def eval_sub_data(sub_data, answer_map): |
|
lt = len(sub_data) |
|
for i in range(lt): |
|
item = sub_data.iloc[i] |
|
match = re.search(r'([A-D]+)', item['prediction']) |
|
pred = match.group(1) if match else '' |
|
gt = answer_map[item['index']] |
|
if gt != pred: |
|
return 0 |
|
return 1 |
|
|
|
def show_result(ret_json): |
|
show_dict = ret_json.copy() |
|
table = Table(title=f' MMBench ({self.data_file}) ') |
|
console = Console() |
|
table.add_column('Category', justify='left') |
|
table.add_column('Accuracy (%)', justify='right') |
|
average = show_dict.pop('Average') * 100 |
|
table.add_row('Average', f'{average:.1f}') |
|
table.add_section() |
|
for cat_name, cat_acc in show_dict.items(): |
|
table.add_row(cat_name, f'{cat_acc * 100:.1f}') |
|
with console.capture() as capture: |
|
console.print(table, end='') |
|
print('\n' + capture.get()) |
|
print('Note: Please be cautious if you use the results in papers, ' |
|
"since we don't use ChatGPT as a helper for choice " |
|
'extraction') |
|
|
|
data = result_df.sort_values(by='index') |
|
data['prediction'] = [str(x) for x in data['prediction']] |
|
for k in data.keys(): |
|
data[k.lower() if k not in 'ABCD' else k] = data.pop(k) |
|
|
|
data_main = data[data['index'] < int(1e6)] |
|
cate_map = { |
|
i: c |
|
for i, c in zip(self.df['index'], self.df['category']) |
|
} |
|
if self.has_l2_category: |
|
l2_cate_map = { |
|
i: c |
|
for i, c in zip(self.df['index'], self.df['l2-category']) |
|
} |
|
answer_map = { |
|
i: c |
|
for i, c in zip(self.df['index'], self.df['answer']) |
|
} |
|
|
|
lt = len(data_main) |
|
hit, tot = 0, 0 |
|
result = {} |
|
for i in range(lt): |
|
item_main = data_main.iloc[i] |
|
idx = item_main['index'] |
|
assert idx not in result |
|
sub_data = data[data['index'] % int(1e6) == idx] |
|
ret = eval_sub_data(sub_data, answer_map) |
|
result[idx] = ret |
|
hit += ret |
|
tot += 1 |
|
|
|
indices = data_main['index'] |
|
data_main = data_main.copy() |
|
data_main['hit'] = [result[i] for i in indices] |
|
main_idx = data_main['index'] |
|
data_main['category'] = [cate_map[i] for i in main_idx] |
|
|
|
ret_json = calc_acc(data_main, 'overall') |
|
|
|
if self.has_l2_category: |
|
data_main['l2-category'] = [l2_cate_map[i] for i in main_idx] |
|
l2 = calc_acc(data_main, 'l2-category') |
|
ret_json.update(l2) |
|
else: |
|
leaf = calc_acc(data_main, 'category') |
|
ret_json.update(leaf) |
|
if show: |
|
show_result(ret_json) |
|
return ret_json |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
|
|
torch.manual_seed(args.seed) |
|
|
|
if args.launcher != 'none': |
|
set_multi_processing(distributed=True) |
|
init_dist(args.launcher) |
|
|
|
rank, world_size = get_dist_info() |
|
torch.cuda.set_device(rank) |
|
else: |
|
rank = 0 |
|
world_size = 1 |
|
|
|
|
|
quantization_config = None |
|
load_in_8bit = False |
|
if args.bits == 4: |
|
quantization_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
load_in_8bit=False, |
|
llm_int8_threshold=6.0, |
|
llm_int8_has_fp16_weight=False, |
|
bnb_4bit_compute_dtype=torch.float16, |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_quant_type='nf4') |
|
elif args.bits == 8: |
|
load_in_8bit = True |
|
model_kwargs = { |
|
'quantization_config': quantization_config, |
|
'load_in_8bit': load_in_8bit, |
|
'device_map': rank if world_size > 1 else 'auto', |
|
'offload_folder': args.offload_folder, |
|
'trust_remote_code': True, |
|
'torch_dtype': TORCH_DTYPE_MAP[args.torch_dtype] |
|
} |
|
|
|
|
|
with LoadWoInit(): |
|
llm = AutoModelForCausalLM.from_pretrained(args.model_name_or_path, |
|
**model_kwargs) |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
args.model_name_or_path, |
|
trust_remote_code=True, |
|
encode_special_tokens=True) |
|
master_print(f'Load LLM from {args.model_name_or_path}') |
|
|
|
llava_path = snapshot_download( |
|
repo_id=args.llava) if not osp.isdir(args.llava) else args.llava |
|
|
|
|
|
if 'visual_encoder' in os.listdir(llava_path): |
|
assert args.visual_encoder is None, ( |
|
"Please don't specify the `--visual-encoder` since passed " |
|
'`--llava` contains a visual encoder!') |
|
visual_encoder_path = osp.join(llava_path, 'visual_encoder') |
|
else: |
|
assert args.visual_encoder is not None, ( |
|
'Please specify the `--visual-encoder`!') |
|
visual_encoder_path = args.visual_encoder |
|
with LoadWoInit(): |
|
visual_encoder = Dinov2Model.from_pretrained( |
|
visual_encoder_path, torch_dtype=TORCH_DTYPE_MAP[args.torch_dtype]) |
|
image_processor = AutoImageProcessor.from_pretrained( |
|
visual_encoder_path) |
|
master_print(f'Load visual_encoder from {visual_encoder_path}') |
|
|
|
|
|
if 'llm_adapter' in os.listdir(llava_path): |
|
adapter_path = osp.join(llava_path, 'llm_adapter') |
|
|
|
with LoadWoInit(): |
|
llm = PeftModel.from_pretrained( |
|
llm, adapter_path, offload_folder=args.offload_folder) |
|
|
|
master_print(f'Load LLM adapter from {args.llava}') |
|
|
|
if 'visual_encoder_adapter' in os.listdir(llava_path): |
|
adapter_path = osp.join(llava_path, 'visual_encoder_adapter') |
|
visual_encoder = PeftModel.from_pretrained( |
|
visual_encoder, adapter_path, offload_folder=args.offload_folder) |
|
master_print(f'Load visual_encoder adapter from {args.llava}') |
|
|
|
|
|
projector_path = osp.join(llava_path, 'projector') |
|
with LoadWoInit(): |
|
projector = AutoModel.from_pretrained( |
|
projector_path, torch_dtype=TORCH_DTYPE_MAP[args.torch_dtype]) |
|
master_print(f'Load projector from {args.llava}') |
|
|
|
projector.cuda() |
|
projector.eval() |
|
|
|
visual_encoder.cuda() |
|
visual_encoder.eval() |
|
|
|
llm.eval() |
|
|
|
stop_words = args.stop_words |
|
if args.prompt_template: |
|
template = PROMPT_TEMPLATE[args.prompt_template] |
|
stop_words += template.get('STOP_WORDS', []) |
|
stop_criteria = get_stop_criteria( |
|
tokenizer=tokenizer, stop_words=stop_words) |
|
|
|
gen_config = GenerationConfig( |
|
max_new_tokens=args.max_new_tokens, |
|
do_sample=False, |
|
eos_token_id=tokenizer.eos_token_id, |
|
pad_token_id=tokenizer.pad_token_id |
|
if tokenizer.pad_token_id is not None else tokenizer.eos_token_id, |
|
) |
|
|
|
|
|
if args.work_dir is not None: |
|
|
|
save_dir = args.work_dir |
|
else: |
|
|
|
save_dir = osp.join('./work_dirs', |
|
osp.splitext(osp.basename(args.data_path))[0]) |
|
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime(time.time())) |
|
save_dir = osp.join(save_dir, timestamp) |
|
|
|
if rank == 0: |
|
mkdir_or_exist(osp.abspath(save_dir)) |
|
print('=======================================================') |
|
print(f'Dataset path: {osp.abspath(args.data_path)}\n' |
|
f'Results will be saved to {osp.abspath(save_dir)}') |
|
print('=======================================================') |
|
|
|
args_path = osp.join(save_dir, 'args.json') |
|
with open(args_path, 'w') as f: |
|
json.dump(args.__dict__, f, indent=2) |
|
|
|
results_xlsx_path = osp.join(save_dir, 'mmbench_result.xlsx') |
|
results_json_path = osp.join(save_dir, 'mmbench_result.json') |
|
|
|
dataset = MMBenchDataset(args.data_path) |
|
|
|
results = [] |
|
n_samples = len(dataset) |
|
per_rank_samples = math.ceil(n_samples / world_size) |
|
|
|
per_rank_ids = range(per_rank_samples * rank, |
|
min(n_samples, per_rank_samples * (rank + 1))) |
|
for i in tqdm.tqdm(per_rank_ids, desc=f'Rank {rank}'): |
|
data_sample = dataset[i] |
|
if data_sample['context'] is not None: |
|
text = data_sample['context'] + '\n' + data_sample[ |
|
'question'] + '\n' + data_sample['options'] |
|
else: |
|
text = data_sample['question'] + '\n' + data_sample['options'] |
|
|
|
text = DEFAULT_IMAGE_TOKEN + '\n' + text |
|
|
|
if is_cn_string(text): |
|
text = text + '请直接回答选项字母。' |
|
else: |
|
text = text + ("Answer with the option's letter from the " |
|
'given choices directly.') |
|
|
|
if args.prompt_template: |
|
prompt_text = '' |
|
template = PROMPT_TEMPLATE[args.prompt_template] |
|
prompt_text += template['INSTRUCTION'].format( |
|
input=text, round=1, bot_name=args.bot_name) |
|
else: |
|
prompt_text = text |
|
inputs = prompt_text |
|
|
|
image = data_sample['img'].convert('RGB') |
|
image = expand2square( |
|
image, tuple(int(x * 255) for x in image_processor.image_mean)) |
|
image = image_processor.preprocess( |
|
image, return_tensors='pt')['pixel_values'][0] |
|
image = image.cuda().unsqueeze(0) |
|
visual_outputs = visual_encoder(image, output_hidden_states=True) |
|
pixel_values = projector( |
|
visual_outputs.hidden_states[args.visual_select_layer][:, 1:]) |
|
|
|
chunk_encode = [] |
|
for idx, chunk in enumerate(inputs.split(DEFAULT_IMAGE_TOKEN)): |
|
if idx == 0: |
|
cur_encode = tokenizer.encode(chunk) |
|
else: |
|
cur_encode = tokenizer.encode(chunk, add_special_tokens=False) |
|
chunk_encode.append(cur_encode) |
|
assert len(chunk_encode) == 2 |
|
ids = [] |
|
for idx, cur_chunk_encode in enumerate(chunk_encode): |
|
ids.extend(cur_chunk_encode) |
|
if idx != len(chunk_encode) - 1: |
|
ids.append(IMAGE_TOKEN_INDEX) |
|
ids = torch.tensor(ids).cuda().unsqueeze(0) |
|
mm_inputs = prepare_inputs_labels_for_multimodal( |
|
llm=llm, input_ids=ids, pixel_values=pixel_values) |
|
|
|
generate_output = llm.generate( |
|
**mm_inputs, |
|
generation_config=gen_config, |
|
streamer=None, |
|
bos_token_id=tokenizer.bos_token_id, |
|
stopping_criteria=stop_criteria) |
|
|
|
predict = tokenizer.decode( |
|
generate_output[0], skip_special_tokens=True).strip() |
|
cur_result = {} |
|
cur_result['question'] = data_sample.get('question') |
|
cur_result.update(data_sample.get('options_dict')) |
|
cur_result['prediction'] = predict |
|
if data_sample.get('category') is not None: |
|
cur_result['category'] = data_sample.get('category') |
|
if data_sample.get('l2-category') is not None: |
|
cur_result['l2-category'] = data_sample.get('l2-category') |
|
cur_result['index'] = data_sample.get('index') |
|
cur_result['split'] = data_sample.get('split') |
|
cur_result['answer'] = data_sample.get('answer') |
|
results.append(cur_result) |
|
|
|
results = collect_results(results, n_samples) |
|
|
|
if get_rank() == 0: |
|
|
|
results_df = pd.DataFrame(results) |
|
with pd.ExcelWriter(results_xlsx_path, engine='openpyxl') as writer: |
|
results_df.to_excel(writer, index=False) |
|
|
|
if dataset.split == 'dev': |
|
results_dict = dataset.eval_result(results_df, show=True) |
|
with open(results_json_path, 'w') as f: |
|
json.dump(results_dict, f, indent=2) |
|
else: |
|
print('All done!') |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
main() |
|
|