initial commit
Browse files- llava_internlm2_chat_7b_dinov2_e1_gpu8_finetune.py +219 -0
- llava_internlm2_chat_7b_dinov2_e1_gpu8_pretrain.py +214 -0
- lora_and_projector/llm_adapter/.gitattributes +1 -0
- lora_and_projector/llm_adapter/README.md +204 -0
- lora_and_projector/llm_adapter/adapter_config.json +30 -0
- lora_and_projector/llm_adapter/adapter_model.safetensors +3 -0
- lora_and_projector/projector/.gitattributes +1 -0
- lora_and_projector/projector/config.json +17 -0
- lora_and_projector/projector/configuration_projector.py +23 -0
- lora_and_projector/projector/model.safetensors +3 -0
- lora_and_projector/projector/modeling_projector.py +51 -0
- lora_and_projector/visual_encoder_adapter/.gitattributes +1 -0
- lora_and_projector/visual_encoder_adapter/README.md +204 -0
- lora_and_projector/visual_encoder_adapter/adapter_config.json +33 -0
- lora_and_projector/visual_encoder_adapter/adapter_model.safetensors +3 -0
- lora_and_projector/xtuner_config.py +219 -0
- modified_xtuner_code/xtuner/tools/chat.py +494 -0
- modified_xtuner_code/xtuner/tools/mmbench.py +510 -0
llava_internlm2_chat_7b_dinov2_e1_gpu8_finetune.py
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import torch
|
3 |
+
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
|
4 |
+
LoggerHook, ParamSchedulerHook)
|
5 |
+
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
|
6 |
+
from peft import LoraConfig
|
7 |
+
from torch.optim import AdamW
|
8 |
+
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
9 |
+
BitsAndBytesConfig,
|
10 |
+
AutoImageProcessor, Dinov2Model,
|
11 |
+
CLIPImageProcessor, CLIPVisionModel)
|
12 |
+
|
13 |
+
from xtuner.dataset import LLaVADataset
|
14 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
15 |
+
from xtuner.dataset.map_fns import llava_map_fn, template_map_fn_factory
|
16 |
+
from xtuner.dataset.samplers import LengthGroupedSampler
|
17 |
+
from xtuner.engine import DatasetInfoHook, EvaluateChatHook
|
18 |
+
from xtuner.model import LLaVAModel
|
19 |
+
from xtuner.utils import PROMPT_TEMPLATE
|
20 |
+
|
21 |
+
#######################################################################
|
22 |
+
# PART 1 Settings #
|
23 |
+
#######################################################################
|
24 |
+
# Model
|
25 |
+
llm_name_or_path = 'internlm/internlm2-chat-7b'
|
26 |
+
visual_encoder_name_or_path = 'facebook/dinov2-large'
|
27 |
+
# Specify the pretrained pth
|
28 |
+
pretrained_pth = './work_dirs/llava_internlm2_chat_7b_dinov2_e1_gpu8_pretrain_copy/epoch_1.pth' # noqa: E501
|
29 |
+
|
30 |
+
# Data
|
31 |
+
data_root = './'
|
32 |
+
data_path = data_root + 'LLaVA-Instruct-150K/llava_v1_5_mix665k.json'
|
33 |
+
image_folder = data_root + 'llava_images/'
|
34 |
+
prompt_template = PROMPT_TEMPLATE.internlm2_chat
|
35 |
+
max_length = int(2048 - (336 / 14)**2)
|
36 |
+
|
37 |
+
# Scheduler & Optimizer
|
38 |
+
batch_size = 16 # per_device
|
39 |
+
accumulative_counts = 1
|
40 |
+
dataloader_num_workers = 0
|
41 |
+
max_epochs = 1
|
42 |
+
optim_type = AdamW
|
43 |
+
lr = 2e-4
|
44 |
+
betas = (0.9, 0.999)
|
45 |
+
weight_decay = 0
|
46 |
+
max_norm = 1 # grad clip
|
47 |
+
warmup_ratio = 0.03
|
48 |
+
|
49 |
+
# Evaluate the generation performance during the training
|
50 |
+
evaluation_freq = 500
|
51 |
+
SYSTEM = ''
|
52 |
+
evaluation_images = 'https://llava-vl.github.io/static/images/view.jpg'
|
53 |
+
evaluation_inputs = ['请描述一下这张照片', 'Please describe this picture']
|
54 |
+
|
55 |
+
#######################################################################
|
56 |
+
# PART 2 Model & Tokenizer & Image Processor #
|
57 |
+
#######################################################################
|
58 |
+
tokenizer = dict(
|
59 |
+
type=AutoTokenizer.from_pretrained,
|
60 |
+
pretrained_model_name_or_path=llm_name_or_path,
|
61 |
+
trust_remote_code=True,
|
62 |
+
padding_side='right')
|
63 |
+
|
64 |
+
image_processor = dict(
|
65 |
+
type=AutoImageProcessor.from_pretrained,
|
66 |
+
pretrained_model_name_or_path=visual_encoder_name_or_path,
|
67 |
+
trust_remote_code=True)
|
68 |
+
|
69 |
+
model = dict(
|
70 |
+
type=LLaVAModel,
|
71 |
+
freeze_llm=True,
|
72 |
+
freeze_visual_encoder=True,
|
73 |
+
pretrained_pth=pretrained_pth,
|
74 |
+
llm=dict(
|
75 |
+
type=AutoModelForCausalLM.from_pretrained,
|
76 |
+
pretrained_model_name_or_path=llm_name_or_path,
|
77 |
+
trust_remote_code=True,
|
78 |
+
torch_dtype=torch.float16,
|
79 |
+
quantization_config=dict(
|
80 |
+
type=BitsAndBytesConfig,
|
81 |
+
load_in_4bit=True,
|
82 |
+
load_in_8bit=False,
|
83 |
+
llm_int8_threshold=6.0,
|
84 |
+
llm_int8_has_fp16_weight=False,
|
85 |
+
bnb_4bit_compute_dtype=torch.float16,
|
86 |
+
bnb_4bit_use_double_quant=True,
|
87 |
+
bnb_4bit_quant_type='nf4')),
|
88 |
+
llm_lora=dict(
|
89 |
+
type=LoraConfig,
|
90 |
+
r=512,
|
91 |
+
lora_alpha=256,
|
92 |
+
lora_dropout=0.05,
|
93 |
+
bias='none',
|
94 |
+
task_type='CAUSAL_LM'),
|
95 |
+
visual_encoder=dict(
|
96 |
+
type=Dinov2Model.from_pretrained,
|
97 |
+
pretrained_model_name_or_path=visual_encoder_name_or_path),
|
98 |
+
visual_encoder_lora=dict(
|
99 |
+
type=LoraConfig, r=64, lora_alpha=16, lora_dropout=0.05, bias='none'))
|
100 |
+
|
101 |
+
#######################################################################
|
102 |
+
# PART 3 Dataset & Dataloader #
|
103 |
+
#######################################################################
|
104 |
+
llava_dataset = dict(
|
105 |
+
type=LLaVADataset,
|
106 |
+
data_path=data_path,
|
107 |
+
image_folder=image_folder,
|
108 |
+
tokenizer=tokenizer,
|
109 |
+
image_processor=image_processor,
|
110 |
+
dataset_map_fn=llava_map_fn,
|
111 |
+
template_map_fn=dict(
|
112 |
+
type=template_map_fn_factory, template=prompt_template),
|
113 |
+
max_length=max_length,
|
114 |
+
pad_image_to_square=True)
|
115 |
+
|
116 |
+
train_dataloader = dict(
|
117 |
+
batch_size=batch_size,
|
118 |
+
num_workers=dataloader_num_workers,
|
119 |
+
dataset=llava_dataset,
|
120 |
+
sampler=dict(
|
121 |
+
type=LengthGroupedSampler,
|
122 |
+
length_property='modality_length',
|
123 |
+
per_device_batch_size=batch_size * accumulative_counts),
|
124 |
+
collate_fn=dict(type=default_collate_fn))
|
125 |
+
|
126 |
+
#######################################################################
|
127 |
+
# PART 4 Scheduler & Optimizer #
|
128 |
+
#######################################################################
|
129 |
+
# optimizer
|
130 |
+
optim_wrapper = dict(
|
131 |
+
type=AmpOptimWrapper,
|
132 |
+
optimizer=dict(
|
133 |
+
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
|
134 |
+
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
|
135 |
+
accumulative_counts=accumulative_counts,
|
136 |
+
loss_scale='dynamic',
|
137 |
+
dtype='float16')
|
138 |
+
|
139 |
+
# learning policy
|
140 |
+
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
|
141 |
+
param_scheduler = [
|
142 |
+
dict(
|
143 |
+
type=LinearLR,
|
144 |
+
start_factor=1e-5,
|
145 |
+
by_epoch=True,
|
146 |
+
begin=0,
|
147 |
+
end=warmup_ratio * max_epochs,
|
148 |
+
convert_to_iter_based=True),
|
149 |
+
dict(
|
150 |
+
type=CosineAnnealingLR,
|
151 |
+
eta_min=0.0,
|
152 |
+
by_epoch=True,
|
153 |
+
begin=warmup_ratio * max_epochs,
|
154 |
+
T_max=max_epochs,
|
155 |
+
convert_to_iter_based=True)
|
156 |
+
]
|
157 |
+
|
158 |
+
# train, val, test setting
|
159 |
+
train_cfg = dict(by_epoch=True, max_epochs=max_epochs, val_interval=1)
|
160 |
+
|
161 |
+
#######################################################################
|
162 |
+
# PART 5 Runtime #
|
163 |
+
#######################################################################
|
164 |
+
# Log the dialogue periodically during the training process, optional
|
165 |
+
custom_hooks = [
|
166 |
+
dict(type=DatasetInfoHook, tokenizer=tokenizer),
|
167 |
+
dict(
|
168 |
+
type=EvaluateChatHook,
|
169 |
+
tokenizer=tokenizer,
|
170 |
+
image_processor=image_processor,
|
171 |
+
every_n_iters=evaluation_freq,
|
172 |
+
evaluation_inputs=evaluation_inputs,
|
173 |
+
evaluation_images=evaluation_images,
|
174 |
+
system=SYSTEM,
|
175 |
+
prompt_template=prompt_template)
|
176 |
+
]
|
177 |
+
|
178 |
+
# configure default hooks
|
179 |
+
default_hooks = dict(
|
180 |
+
# record the time of every iteration.
|
181 |
+
timer=dict(type=IterTimerHook),
|
182 |
+
# print log every 100 iterations.
|
183 |
+
logger=dict(type=LoggerHook, interval=10),
|
184 |
+
# enable the parameter scheduler.
|
185 |
+
param_scheduler=dict(type=ParamSchedulerHook),
|
186 |
+
# save checkpoint per epoch.
|
187 |
+
checkpoint=dict(type=CheckpointHook, interval=1),
|
188 |
+
# set sampler seed in distributed evrionment.
|
189 |
+
sampler_seed=dict(type=DistSamplerSeedHook),
|
190 |
+
)
|
191 |
+
|
192 |
+
# configure environment
|
193 |
+
env_cfg = dict(
|
194 |
+
# whether to enable cudnn benchmark
|
195 |
+
cudnn_benchmark=False,
|
196 |
+
# set multi process parameters
|
197 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
198 |
+
# set distributed parameters
|
199 |
+
dist_cfg=dict(backend='nccl'),
|
200 |
+
)
|
201 |
+
|
202 |
+
# set visualizer
|
203 |
+
from mmengine.visualization import Visualizer, TensorboardVisBackend
|
204 |
+
visualizer = dict(
|
205 |
+
type=Visualizer,
|
206 |
+
vis_backends=[dict(type=TensorboardVisBackend)]
|
207 |
+
)
|
208 |
+
|
209 |
+
# set log level
|
210 |
+
log_level = 'INFO'
|
211 |
+
|
212 |
+
# load from which checkpoint
|
213 |
+
load_from = None
|
214 |
+
|
215 |
+
# whether to resume training from the loaded checkpoint
|
216 |
+
resume = False
|
217 |
+
|
218 |
+
# Defaults to use random seed and disable `deterministic`
|
219 |
+
randomness = dict(seed=None, deterministic=False)
|
llava_internlm2_chat_7b_dinov2_e1_gpu8_pretrain.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import torch
|
3 |
+
from mmengine.dataset import DefaultSampler
|
4 |
+
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
|
5 |
+
LoggerHook, ParamSchedulerHook)
|
6 |
+
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
|
7 |
+
from torch.optim import AdamW
|
8 |
+
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
9 |
+
BitsAndBytesConfig, AutoImageProcessor,
|
10 |
+
Dinov2Model)
|
11 |
+
|
12 |
+
from xtuner.dataset import LLaVADataset
|
13 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
14 |
+
from xtuner.dataset.map_fns import llava_map_fn, template_map_fn_factory
|
15 |
+
from xtuner.engine.hooks import DatasetInfoHook, EvaluateChatHook
|
16 |
+
from xtuner.engine.runner import TrainLoop
|
17 |
+
from xtuner.model import LLaVAModel
|
18 |
+
from xtuner.utils import PROMPT_TEMPLATE
|
19 |
+
|
20 |
+
#######################################################################
|
21 |
+
# PART 1 Settings #
|
22 |
+
#######################################################################
|
23 |
+
# Model
|
24 |
+
llm_name_or_path = 'internlm/internlm2-chat-7b'
|
25 |
+
visual_encoder_name_or_path = 'facebook/dinov2-large'
|
26 |
+
|
27 |
+
# Data
|
28 |
+
data_root = './data/llava_data/'
|
29 |
+
data_path = data_root + 'LLaVA-Pretrain/blip_laion_cc_sbu_558k.json'
|
30 |
+
image_folder = data_root + 'LLaVA-Pretrain/images'
|
31 |
+
prompt_template = PROMPT_TEMPLATE.internlm2_chat
|
32 |
+
max_length = int(2048 - (336 / 14)**2)
|
33 |
+
|
34 |
+
# Scheduler & Optimizer
|
35 |
+
batch_size = 32 # per_device
|
36 |
+
accumulative_counts = 1
|
37 |
+
dataloader_num_workers = 0
|
38 |
+
max_epochs = 1
|
39 |
+
optim_type = AdamW
|
40 |
+
lr = 1e-3
|
41 |
+
betas = (0.9, 0.999)
|
42 |
+
weight_decay = 0
|
43 |
+
max_norm = 1 # grad clip
|
44 |
+
warmup_ratio = 0.03
|
45 |
+
|
46 |
+
# Save
|
47 |
+
save_steps = 500
|
48 |
+
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
|
49 |
+
|
50 |
+
# Evaluate the generation performance during the training
|
51 |
+
evaluation_freq = 500
|
52 |
+
SYSTEM = ''
|
53 |
+
evaluation_images = 'https://llava-vl.github.io/static/images/view.jpg'
|
54 |
+
evaluation_inputs = ['请描述一下这张照片', 'Please describe this picture']
|
55 |
+
|
56 |
+
#######################################################################
|
57 |
+
# PART 2 Model & Tokenizer & Image Processor #
|
58 |
+
#######################################################################
|
59 |
+
tokenizer = dict(
|
60 |
+
type=AutoTokenizer.from_pretrained,
|
61 |
+
pretrained_model_name_or_path=llm_name_or_path,
|
62 |
+
trust_remote_code=True,
|
63 |
+
padding_side='right')
|
64 |
+
|
65 |
+
image_processor = dict(
|
66 |
+
type=AutoImageProcessor.from_pretrained,
|
67 |
+
pretrained_model_name_or_path=visual_encoder_name_or_path,
|
68 |
+
trust_remote_code=True)
|
69 |
+
|
70 |
+
model = dict(
|
71 |
+
type=LLaVAModel,
|
72 |
+
freeze_llm=True,
|
73 |
+
freeze_visual_encoder=True,
|
74 |
+
llm=dict(
|
75 |
+
type=AutoModelForCausalLM.from_pretrained,
|
76 |
+
pretrained_model_name_or_path=llm_name_or_path,
|
77 |
+
trust_remote_code=True,
|
78 |
+
torch_dtype=torch.float16,
|
79 |
+
quantization_config=dict(
|
80 |
+
type=BitsAndBytesConfig,
|
81 |
+
load_in_4bit=True,
|
82 |
+
load_in_8bit=False,
|
83 |
+
llm_int8_threshold=6.0,
|
84 |
+
llm_int8_has_fp16_weight=False,
|
85 |
+
bnb_4bit_compute_dtype=torch.float16,
|
86 |
+
bnb_4bit_use_double_quant=True,
|
87 |
+
bnb_4bit_quant_type='nf4')),
|
88 |
+
visual_encoder=dict(
|
89 |
+
type=Dinov2Model.from_pretrained,
|
90 |
+
pretrained_model_name_or_path=visual_encoder_name_or_path))
|
91 |
+
|
92 |
+
#######################################################################
|
93 |
+
# PART 3 Dataset & Dataloader #
|
94 |
+
#######################################################################
|
95 |
+
llava_dataset = dict(
|
96 |
+
type=LLaVADataset,
|
97 |
+
data_path=data_path,
|
98 |
+
image_folder=image_folder,
|
99 |
+
tokenizer=tokenizer,
|
100 |
+
image_processor=image_processor,
|
101 |
+
dataset_map_fn=llava_map_fn,
|
102 |
+
template_map_fn=dict(
|
103 |
+
type=template_map_fn_factory, template=prompt_template),
|
104 |
+
max_length=max_length,
|
105 |
+
pad_image_to_square=False)
|
106 |
+
|
107 |
+
train_dataloader = dict(
|
108 |
+
batch_size=batch_size,
|
109 |
+
num_workers=dataloader_num_workers,
|
110 |
+
dataset=llava_dataset,
|
111 |
+
sampler=dict(type=DefaultSampler, shuffle=True),
|
112 |
+
collate_fn=dict(type=default_collate_fn))
|
113 |
+
|
114 |
+
#######################################################################
|
115 |
+
# PART 4 Scheduler & Optimizer #
|
116 |
+
#######################################################################
|
117 |
+
# optimizer
|
118 |
+
optim_wrapper = dict(
|
119 |
+
type=AmpOptimWrapper,
|
120 |
+
optimizer=dict(
|
121 |
+
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
|
122 |
+
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
|
123 |
+
accumulative_counts=accumulative_counts,
|
124 |
+
loss_scale='dynamic',
|
125 |
+
dtype='float16')
|
126 |
+
|
127 |
+
# learning policy
|
128 |
+
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
|
129 |
+
param_scheduler = [
|
130 |
+
dict(
|
131 |
+
type=LinearLR,
|
132 |
+
start_factor=1e-5,
|
133 |
+
by_epoch=True,
|
134 |
+
begin=0,
|
135 |
+
end=warmup_ratio * max_epochs,
|
136 |
+
convert_to_iter_based=True),
|
137 |
+
dict(
|
138 |
+
type=CosineAnnealingLR,
|
139 |
+
eta_min=0.0,
|
140 |
+
by_epoch=True,
|
141 |
+
begin=warmup_ratio * max_epochs,
|
142 |
+
end=max_epochs,
|
143 |
+
convert_to_iter_based=True)
|
144 |
+
]
|
145 |
+
|
146 |
+
# train, val, test setting
|
147 |
+
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
|
148 |
+
|
149 |
+
#######################################################################
|
150 |
+
# PART 5 Runtime #
|
151 |
+
#######################################################################
|
152 |
+
# Log the dialogue periodically during the training process, optional
|
153 |
+
custom_hooks = [
|
154 |
+
dict(type=DatasetInfoHook, tokenizer=tokenizer),
|
155 |
+
dict(
|
156 |
+
type=EvaluateChatHook,
|
157 |
+
tokenizer=tokenizer,
|
158 |
+
image_processor=image_processor,
|
159 |
+
every_n_iters=evaluation_freq,
|
160 |
+
evaluation_inputs=evaluation_inputs,
|
161 |
+
evaluation_images=evaluation_images,
|
162 |
+
system=SYSTEM,
|
163 |
+
prompt_template=prompt_template)
|
164 |
+
]
|
165 |
+
|
166 |
+
# configure default hooks
|
167 |
+
default_hooks = dict(
|
168 |
+
# record the time of every iteration.
|
169 |
+
timer=dict(type=IterTimerHook),
|
170 |
+
# print log every 10 iterations.
|
171 |
+
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
|
172 |
+
# enable the parameter scheduler.
|
173 |
+
param_scheduler=dict(type=ParamSchedulerHook),
|
174 |
+
# save checkpoint per `save_steps`.
|
175 |
+
checkpoint=dict(
|
176 |
+
type=CheckpointHook,
|
177 |
+
by_epoch=False,
|
178 |
+
interval=save_steps,
|
179 |
+
max_keep_ckpts=save_total_limit),
|
180 |
+
# set sampler seed in distributed evrionment.
|
181 |
+
sampler_seed=dict(type=DistSamplerSeedHook),
|
182 |
+
)
|
183 |
+
|
184 |
+
# configure environment
|
185 |
+
env_cfg = dict(
|
186 |
+
# whether to enable cudnn benchmark
|
187 |
+
cudnn_benchmark=False,
|
188 |
+
# set multi process parameters
|
189 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
190 |
+
# set distributed parameters
|
191 |
+
dist_cfg=dict(backend='nccl'),
|
192 |
+
)
|
193 |
+
|
194 |
+
# set visualizer
|
195 |
+
from mmengine.visualization import Visualizer, TensorboardVisBackend
|
196 |
+
visualizer = dict(
|
197 |
+
type=Visualizer,
|
198 |
+
vis_backends=[dict(type=TensorboardVisBackend)]
|
199 |
+
)
|
200 |
+
|
201 |
+
# set log level
|
202 |
+
log_level = 'INFO'
|
203 |
+
|
204 |
+
# load from which checkpoint
|
205 |
+
load_from = None
|
206 |
+
|
207 |
+
# whether to resume training from the loaded checkpoint
|
208 |
+
resume = False
|
209 |
+
|
210 |
+
# Defaults to use random seed and disable `deterministic`
|
211 |
+
randomness = dict(seed=None, deterministic=False)
|
212 |
+
|
213 |
+
# set log processor
|
214 |
+
log_processor = dict(by_epoch=False)
|
lora_and_projector/llm_adapter/.gitattributes
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
adapter_model.safetensors filter=lfs diff=lfs merge=lfs -text
|
lora_and_projector/llm_adapter/README.md
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: ../internlm2-chat-7b/
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
|
201 |
+
|
202 |
+
### Framework versions
|
203 |
+
|
204 |
+
- PEFT 0.7.1
|
lora_and_projector/llm_adapter/adapter_config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "../internlm2-chat-7b/",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"loftq_config": {},
|
12 |
+
"lora_alpha": 256,
|
13 |
+
"lora_dropout": 0.05,
|
14 |
+
"megatron_config": null,
|
15 |
+
"megatron_core": "megatron.core",
|
16 |
+
"modules_to_save": null,
|
17 |
+
"peft_type": "LORA",
|
18 |
+
"r": 512,
|
19 |
+
"rank_pattern": {},
|
20 |
+
"revision": null,
|
21 |
+
"target_modules": [
|
22 |
+
"output",
|
23 |
+
"w3",
|
24 |
+
"w2",
|
25 |
+
"w1",
|
26 |
+
"wo",
|
27 |
+
"wqkv"
|
28 |
+
],
|
29 |
+
"task_type": "CAUSAL_LM"
|
30 |
+
}
|
lora_and_projector/llm_adapter/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c8f4f8c4b7d1e163de56982a1e5d97755837ab52846c3e3da5dee107d6827f1
|
3 |
+
size 2514922648
|
lora_and_projector/projector/.gitattributes
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
model.safetensors filter=lfs diff=lfs merge=lfs -text
|
lora_and_projector/projector/config.json
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"ProjectorModel"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_projector.ProjectorConfig",
|
7 |
+
"AutoModel": "modeling_projector.ProjectorModel"
|
8 |
+
},
|
9 |
+
"bias": true,
|
10 |
+
"depth": 2,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"llm_hidden_size": 4096,
|
13 |
+
"model_type": "projector",
|
14 |
+
"torch_dtype": "float32",
|
15 |
+
"transformers_version": "4.37.1",
|
16 |
+
"visual_hidden_size": 1024
|
17 |
+
}
|
lora_and_projector/projector/configuration_projector.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
from transformers import PretrainedConfig
|
3 |
+
|
4 |
+
|
5 |
+
class ProjectorConfig(PretrainedConfig):
|
6 |
+
model_type = 'projector'
|
7 |
+
_auto_class = 'AutoConfig'
|
8 |
+
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
visual_hidden_size=4096,
|
12 |
+
llm_hidden_size=4096,
|
13 |
+
depth=2,
|
14 |
+
hidden_act='gelu',
|
15 |
+
bias=True,
|
16 |
+
**kwargs,
|
17 |
+
):
|
18 |
+
self.visual_hidden_size = visual_hidden_size
|
19 |
+
self.llm_hidden_size = llm_hidden_size
|
20 |
+
self.depth = depth
|
21 |
+
self.hidden_act = hidden_act
|
22 |
+
self.bias = bias
|
23 |
+
super().__init__(**kwargs)
|
lora_and_projector/projector/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4dca1653bb4b6d9024d8c383caf196304a84ab8d115022e320ec4f7a9f46b6be
|
3 |
+
size 83919216
|
lora_and_projector/projector/modeling_projector.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from transformers import PreTrainedModel
|
5 |
+
from transformers.activations import ACT2FN
|
6 |
+
|
7 |
+
from .configuration_projector import ProjectorConfig
|
8 |
+
|
9 |
+
|
10 |
+
class ProjectorModel(PreTrainedModel):
|
11 |
+
_auto_class = 'AutoModel'
|
12 |
+
config_class = ProjectorConfig
|
13 |
+
base_model_prefix = 'model'
|
14 |
+
supports_gradient_checkpointing = True
|
15 |
+
|
16 |
+
def __init__(self, config: ProjectorConfig) -> None:
|
17 |
+
super().__init__(config)
|
18 |
+
self.gradient_checkpointing = False
|
19 |
+
|
20 |
+
modules = [
|
21 |
+
nn.Linear(
|
22 |
+
config.visual_hidden_size,
|
23 |
+
config.llm_hidden_size,
|
24 |
+
bias=config.bias)
|
25 |
+
]
|
26 |
+
for _ in range(1, config.depth):
|
27 |
+
modules.append(ACT2FN[config.hidden_act])
|
28 |
+
modules.append(
|
29 |
+
nn.Linear(
|
30 |
+
config.llm_hidden_size,
|
31 |
+
config.llm_hidden_size,
|
32 |
+
bias=config.bias))
|
33 |
+
self.model = nn.Sequential(*modules)
|
34 |
+
|
35 |
+
def enable_input_require_grads(self):
|
36 |
+
|
37 |
+
def make_inputs_require_grad(module, input, output):
|
38 |
+
output.requires_grad_(True)
|
39 |
+
|
40 |
+
self.model.register_forward_hook(make_inputs_require_grad)
|
41 |
+
|
42 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
43 |
+
if isinstance(module, ProjectorModel):
|
44 |
+
module.gradient_checkpointing = value
|
45 |
+
|
46 |
+
def forward(self, x):
|
47 |
+
if self.gradient_checkpointing and self.training:
|
48 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(self.model, x)
|
49 |
+
else:
|
50 |
+
layer_outputs = self.model(x)
|
51 |
+
return layer_outputs
|
lora_and_projector/visual_encoder_adapter/.gitattributes
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
adapter_model.safetensors filter=lfs diff=lfs merge=lfs -text
|
lora_and_projector/visual_encoder_adapter/README.md
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: ../dinov2-large/
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
|
201 |
+
|
202 |
+
### Framework versions
|
203 |
+
|
204 |
+
- PEFT 0.7.1
|
lora_and_projector/visual_encoder_adapter/adapter_config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": {
|
4 |
+
"base_model_class": "Dinov2Model",
|
5 |
+
"parent_library": "transformers.models.dinov2.modeling_dinov2"
|
6 |
+
},
|
7 |
+
"base_model_name_or_path": "../dinov2-large/",
|
8 |
+
"bias": "none",
|
9 |
+
"fan_in_fan_out": false,
|
10 |
+
"inference_mode": true,
|
11 |
+
"init_lora_weights": true,
|
12 |
+
"layers_pattern": null,
|
13 |
+
"layers_to_transform": null,
|
14 |
+
"loftq_config": {},
|
15 |
+
"lora_alpha": 16,
|
16 |
+
"lora_dropout": 0.05,
|
17 |
+
"megatron_config": null,
|
18 |
+
"megatron_core": "megatron.core",
|
19 |
+
"modules_to_save": null,
|
20 |
+
"peft_type": "LORA",
|
21 |
+
"r": 64,
|
22 |
+
"rank_pattern": {},
|
23 |
+
"revision": null,
|
24 |
+
"target_modules": [
|
25 |
+
"fc2",
|
26 |
+
"fc1",
|
27 |
+
"dense",
|
28 |
+
"key",
|
29 |
+
"query",
|
30 |
+
"value"
|
31 |
+
],
|
32 |
+
"task_type": null
|
33 |
+
}
|
lora_and_projector/visual_encoder_adapter/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:59453737c9e0d1fc0354772a1949c5deb9bcf104c8e991f570f811b823666c14
|
3 |
+
size 113285920
|
lora_and_projector/xtuner_config.py
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import torch
|
3 |
+
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
|
4 |
+
LoggerHook, ParamSchedulerHook)
|
5 |
+
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
|
6 |
+
from peft import LoraConfig
|
7 |
+
from torch.optim import AdamW
|
8 |
+
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
9 |
+
BitsAndBytesConfig,
|
10 |
+
AutoImageProcessor, Dinov2Model,
|
11 |
+
CLIPImageProcessor, CLIPVisionModel)
|
12 |
+
|
13 |
+
from xtuner.dataset import LLaVADataset
|
14 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
15 |
+
from xtuner.dataset.map_fns import llava_map_fn, template_map_fn_factory
|
16 |
+
from xtuner.dataset.samplers import LengthGroupedSampler
|
17 |
+
from xtuner.engine import DatasetInfoHook, EvaluateChatHook
|
18 |
+
from xtuner.model import LLaVAModel
|
19 |
+
from xtuner.utils import PROMPT_TEMPLATE
|
20 |
+
|
21 |
+
#######################################################################
|
22 |
+
# PART 1 Settings #
|
23 |
+
#######################################################################
|
24 |
+
# Model
|
25 |
+
llm_name_or_path = '../internlm2-chat-7b/'
|
26 |
+
visual_encoder_name_or_path = '../dinov2-large/'
|
27 |
+
# Specify the pretrained pth
|
28 |
+
pretrained_pth = './work_dirs/llava_internlm2_chat_7b_clip_vit_large_p14_336_e1_gpu8_pretrain_copy/epoch_1.pth' # noqa: E501
|
29 |
+
|
30 |
+
# Data
|
31 |
+
data_root = './'
|
32 |
+
data_path = data_root + 'LLaVA-Instruct-150K/llava_v1_5_mix665k.json'
|
33 |
+
image_folder = data_root + 'llava_images/'
|
34 |
+
prompt_template = PROMPT_TEMPLATE.internlm2_chat
|
35 |
+
max_length = int(2048 - (336 / 14)**2)
|
36 |
+
|
37 |
+
# Scheduler & Optimizer
|
38 |
+
batch_size = 16 # per_device
|
39 |
+
accumulative_counts = 4
|
40 |
+
dataloader_num_workers = 4
|
41 |
+
max_epochs = 1
|
42 |
+
optim_type = AdamW
|
43 |
+
lr = 2e-4
|
44 |
+
betas = (0.9, 0.999)
|
45 |
+
weight_decay = 0
|
46 |
+
max_norm = 1 # grad clip
|
47 |
+
warmup_ratio = 0.03
|
48 |
+
|
49 |
+
# Evaluate the generation performance during the training
|
50 |
+
evaluation_freq = 500
|
51 |
+
SYSTEM = ''
|
52 |
+
evaluation_images = 'https://llava-vl.github.io/static/images/view.jpg'
|
53 |
+
evaluation_inputs = ['请描述一下这张照片', 'Please describe this picture']
|
54 |
+
|
55 |
+
#######################################################################
|
56 |
+
# PART 2 Model & Tokenizer & Image Processor #
|
57 |
+
#######################################################################
|
58 |
+
tokenizer = dict(
|
59 |
+
type=AutoTokenizer.from_pretrained,
|
60 |
+
pretrained_model_name_or_path=llm_name_or_path,
|
61 |
+
trust_remote_code=True,
|
62 |
+
padding_side='right')
|
63 |
+
|
64 |
+
image_processor = dict(
|
65 |
+
type=AutoImageProcessor.from_pretrained,
|
66 |
+
pretrained_model_name_or_path=visual_encoder_name_or_path,
|
67 |
+
trust_remote_code=True)
|
68 |
+
|
69 |
+
model = dict(
|
70 |
+
type=LLaVAModel,
|
71 |
+
freeze_llm=True,
|
72 |
+
freeze_visual_encoder=True,
|
73 |
+
pretrained_pth=pretrained_pth,
|
74 |
+
llm=dict(
|
75 |
+
type=AutoModelForCausalLM.from_pretrained,
|
76 |
+
pretrained_model_name_or_path=llm_name_or_path,
|
77 |
+
trust_remote_code=True,
|
78 |
+
torch_dtype=torch.float16,
|
79 |
+
quantization_config=dict(
|
80 |
+
type=BitsAndBytesConfig,
|
81 |
+
load_in_4bit=True,
|
82 |
+
load_in_8bit=False,
|
83 |
+
llm_int8_threshold=6.0,
|
84 |
+
llm_int8_has_fp16_weight=False,
|
85 |
+
bnb_4bit_compute_dtype=torch.float16,
|
86 |
+
bnb_4bit_use_double_quant=True,
|
87 |
+
bnb_4bit_quant_type='nf4')),
|
88 |
+
llm_lora=dict(
|
89 |
+
type=LoraConfig,
|
90 |
+
r=512,
|
91 |
+
lora_alpha=256,
|
92 |
+
lora_dropout=0.05,
|
93 |
+
bias='none',
|
94 |
+
task_type='CAUSAL_LM'),
|
95 |
+
visual_encoder=dict(
|
96 |
+
type=Dinov2Model.from_pretrained,
|
97 |
+
pretrained_model_name_or_path=visual_encoder_name_or_path),
|
98 |
+
visual_encoder_lora=dict(
|
99 |
+
type=LoraConfig, r=64, lora_alpha=16, lora_dropout=0.05, bias='none'))
|
100 |
+
|
101 |
+
#######################################################################
|
102 |
+
# PART 3 Dataset & Dataloader #
|
103 |
+
#######################################################################
|
104 |
+
llava_dataset = dict(
|
105 |
+
type=LLaVADataset,
|
106 |
+
data_path=data_path,
|
107 |
+
image_folder=image_folder,
|
108 |
+
tokenizer=tokenizer,
|
109 |
+
image_processor=image_processor,
|
110 |
+
dataset_map_fn=llava_map_fn,
|
111 |
+
template_map_fn=dict(
|
112 |
+
type=template_map_fn_factory, template=prompt_template),
|
113 |
+
max_length=max_length,
|
114 |
+
pad_image_to_square=True)
|
115 |
+
|
116 |
+
train_dataloader = dict(
|
117 |
+
batch_size=batch_size,
|
118 |
+
num_workers=dataloader_num_workers,
|
119 |
+
dataset=llava_dataset,
|
120 |
+
sampler=dict(
|
121 |
+
type=LengthGroupedSampler,
|
122 |
+
length_property='modality_length',
|
123 |
+
per_device_batch_size=batch_size * accumulative_counts),
|
124 |
+
collate_fn=dict(type=default_collate_fn))
|
125 |
+
|
126 |
+
#######################################################################
|
127 |
+
# PART 4 Scheduler & Optimizer #
|
128 |
+
#######################################################################
|
129 |
+
# optimizer
|
130 |
+
optim_wrapper = dict(
|
131 |
+
type=AmpOptimWrapper,
|
132 |
+
optimizer=dict(
|
133 |
+
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
|
134 |
+
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
|
135 |
+
accumulative_counts=accumulative_counts,
|
136 |
+
loss_scale='dynamic',
|
137 |
+
dtype='float16')
|
138 |
+
|
139 |
+
# learning policy
|
140 |
+
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
|
141 |
+
param_scheduler = [
|
142 |
+
dict(
|
143 |
+
type=LinearLR,
|
144 |
+
start_factor=1e-5,
|
145 |
+
by_epoch=True,
|
146 |
+
begin=0,
|
147 |
+
end=warmup_ratio * max_epochs,
|
148 |
+
convert_to_iter_based=True),
|
149 |
+
dict(
|
150 |
+
type=CosineAnnealingLR,
|
151 |
+
eta_min=0.0,
|
152 |
+
by_epoch=True,
|
153 |
+
begin=warmup_ratio * max_epochs,
|
154 |
+
T_max=max_epochs,
|
155 |
+
convert_to_iter_based=True)
|
156 |
+
]
|
157 |
+
|
158 |
+
# train, val, test setting
|
159 |
+
train_cfg = dict(by_epoch=True, max_epochs=max_epochs, val_interval=1)
|
160 |
+
|
161 |
+
#######################################################################
|
162 |
+
# PART 5 Runtime #
|
163 |
+
#######################################################################
|
164 |
+
# Log the dialogue periodically during the training process, optional
|
165 |
+
custom_hooks = [
|
166 |
+
dict(type=DatasetInfoHook, tokenizer=tokenizer),
|
167 |
+
dict(
|
168 |
+
type=EvaluateChatHook,
|
169 |
+
tokenizer=tokenizer,
|
170 |
+
image_processor=image_processor,
|
171 |
+
every_n_iters=evaluation_freq,
|
172 |
+
evaluation_inputs=evaluation_inputs,
|
173 |
+
evaluation_images=evaluation_images,
|
174 |
+
system=SYSTEM,
|
175 |
+
prompt_template=prompt_template)
|
176 |
+
]
|
177 |
+
|
178 |
+
# configure default hooks
|
179 |
+
default_hooks = dict(
|
180 |
+
# record the time of every iteration.
|
181 |
+
timer=dict(type=IterTimerHook),
|
182 |
+
# print log every 100 iterations.
|
183 |
+
logger=dict(type=LoggerHook, interval=10),
|
184 |
+
# enable the parameter scheduler.
|
185 |
+
param_scheduler=dict(type=ParamSchedulerHook),
|
186 |
+
# save checkpoint per epoch.
|
187 |
+
checkpoint=dict(type=CheckpointHook, interval=1),
|
188 |
+
# set sampler seed in distributed evrionment.
|
189 |
+
sampler_seed=dict(type=DistSamplerSeedHook),
|
190 |
+
)
|
191 |
+
|
192 |
+
# configure environment
|
193 |
+
env_cfg = dict(
|
194 |
+
# whether to enable cudnn benchmark
|
195 |
+
cudnn_benchmark=False,
|
196 |
+
# set multi process parameters
|
197 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
198 |
+
# set distributed parameters
|
199 |
+
dist_cfg=dict(backend='nccl'),
|
200 |
+
)
|
201 |
+
|
202 |
+
# set visualizer
|
203 |
+
from mmengine.visualization import Visualizer, TensorboardVisBackend
|
204 |
+
visualizer = dict(
|
205 |
+
type=Visualizer,
|
206 |
+
vis_backends=[dict(type=TensorboardVisBackend)]
|
207 |
+
)
|
208 |
+
|
209 |
+
# set log level
|
210 |
+
log_level = 'INFO'
|
211 |
+
|
212 |
+
# load from which checkpoint
|
213 |
+
load_from = None
|
214 |
+
|
215 |
+
# whether to resume training from the loaded checkpoint
|
216 |
+
resume = False
|
217 |
+
|
218 |
+
# Defaults to use random seed and disable `deterministic`
|
219 |
+
randomness = dict(seed=None, deterministic=False)
|
modified_xtuner_code/xtuner/tools/chat.py
ADDED
@@ -0,0 +1,494 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import argparse
|
3 |
+
import os
|
4 |
+
import os.path as osp
|
5 |
+
import re
|
6 |
+
import sys
|
7 |
+
|
8 |
+
import torch
|
9 |
+
from huggingface_hub import snapshot_download
|
10 |
+
from peft import PeftModel
|
11 |
+
from transformers import (AutoModel, AutoModelForCausalLM, AutoTokenizer,
|
12 |
+
BitsAndBytesConfig, AutoImageProcessor,
|
13 |
+
Dinov2Model, GenerationConfig)
|
14 |
+
|
15 |
+
from xtuner.dataset.utils import expand2square, load_image
|
16 |
+
from xtuner.model.utils import prepare_inputs_labels_for_multimodal
|
17 |
+
from xtuner.tools.utils import get_stop_criteria, get_streamer
|
18 |
+
from xtuner.utils import (DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX,
|
19 |
+
PROMPT_TEMPLATE, SYSTEM_TEMPLATE)
|
20 |
+
|
21 |
+
TORCH_DTYPE_MAP = dict(
|
22 |
+
fp16=torch.float16, bf16=torch.bfloat16, fp32=torch.float32, auto='auto')
|
23 |
+
|
24 |
+
|
25 |
+
def remove_prefix(state_dict, prefix):
|
26 |
+
new_state_dict = {}
|
27 |
+
for key, value in state_dict.items():
|
28 |
+
if key.startswith(prefix):
|
29 |
+
new_key = key[len(prefix):]
|
30 |
+
new_state_dict[new_key] = value
|
31 |
+
else:
|
32 |
+
new_state_dict[key] = value
|
33 |
+
return new_state_dict
|
34 |
+
|
35 |
+
|
36 |
+
def parse_args():
|
37 |
+
parser = argparse.ArgumentParser(description='Chat with a HF model')
|
38 |
+
parser.add_argument(
|
39 |
+
'model_name_or_path', help='Hugging Face model name or path')
|
40 |
+
adapter_group = parser.add_mutually_exclusive_group()
|
41 |
+
adapter_group.add_argument(
|
42 |
+
'--adapter', default=None, help='adapter name or path')
|
43 |
+
adapter_group.add_argument(
|
44 |
+
'--llava', default=None, help='llava name or path')
|
45 |
+
parser.add_argument(
|
46 |
+
'--visual-encoder', default=None, help='visual encoder name or path')
|
47 |
+
parser.add_argument(
|
48 |
+
'--visual-select-layer', default=-2, help='visual select layer')
|
49 |
+
parser.add_argument('--image', default=None, help='image')
|
50 |
+
parser.add_argument(
|
51 |
+
'--torch-dtype',
|
52 |
+
default='fp16',
|
53 |
+
choices=TORCH_DTYPE_MAP.keys(),
|
54 |
+
help='Override the default `torch.dtype` and load the model under '
|
55 |
+
'a specific `dtype`.')
|
56 |
+
parser.add_argument(
|
57 |
+
'--prompt-template',
|
58 |
+
choices=PROMPT_TEMPLATE.keys(),
|
59 |
+
default=None,
|
60 |
+
help='Specify a prompt template')
|
61 |
+
system_group = parser.add_mutually_exclusive_group()
|
62 |
+
system_group.add_argument(
|
63 |
+
'--system', default=None, help='Specify the system text')
|
64 |
+
system_group.add_argument(
|
65 |
+
'--system-template',
|
66 |
+
choices=SYSTEM_TEMPLATE.keys(),
|
67 |
+
default=None,
|
68 |
+
help='Specify a system template')
|
69 |
+
parser.add_argument(
|
70 |
+
'--bits',
|
71 |
+
type=int,
|
72 |
+
choices=[4, 8, None],
|
73 |
+
default=None,
|
74 |
+
help='LLM bits')
|
75 |
+
parser.add_argument(
|
76 |
+
'--bot-name', type=str, default='BOT', help='Name for Bot')
|
77 |
+
parser.add_argument(
|
78 |
+
'--with-plugins',
|
79 |
+
nargs='+',
|
80 |
+
choices=['calculate', 'solve', 'search'],
|
81 |
+
help='Specify plugins to use')
|
82 |
+
parser.add_argument(
|
83 |
+
'--no-streamer', action='store_true', help='Whether to with streamer')
|
84 |
+
parser.add_argument(
|
85 |
+
'--lagent', action='store_true', help='Whether to use lagent')
|
86 |
+
parser.add_argument(
|
87 |
+
'--stop-words', nargs='+', type=str, default=[], help='Stop words')
|
88 |
+
parser.add_argument(
|
89 |
+
'--offload-folder',
|
90 |
+
default=None,
|
91 |
+
help='The folder in which to offload the model weights (or where the '
|
92 |
+
'model weights are already offloaded).')
|
93 |
+
parser.add_argument(
|
94 |
+
'--max-new-tokens',
|
95 |
+
type=int,
|
96 |
+
default=2048,
|
97 |
+
help='Maximum number of new tokens allowed in generated text')
|
98 |
+
parser.add_argument(
|
99 |
+
'--temperature',
|
100 |
+
type=float,
|
101 |
+
default=0.1,
|
102 |
+
help='The value used to modulate the next token probabilities.')
|
103 |
+
parser.add_argument(
|
104 |
+
'--top-k',
|
105 |
+
type=int,
|
106 |
+
default=40,
|
107 |
+
help='The number of highest probability vocabulary tokens to '
|
108 |
+
'keep for top-k-filtering.')
|
109 |
+
parser.add_argument(
|
110 |
+
'--top-p',
|
111 |
+
type=float,
|
112 |
+
default=0.75,
|
113 |
+
help='If set to float < 1, only the smallest set of most probable '
|
114 |
+
'tokens with probabilities that add up to top_p or higher are '
|
115 |
+
'kept for generation.')
|
116 |
+
parser.add_argument(
|
117 |
+
'--repetition-penalty',
|
118 |
+
type=float,
|
119 |
+
default=1.0,
|
120 |
+
help='The parameter for repetition penalty. 1.0 means no penalty.')
|
121 |
+
parser.add_argument(
|
122 |
+
'--seed',
|
123 |
+
type=int,
|
124 |
+
default=0,
|
125 |
+
help='Random seed for reproducible text generation')
|
126 |
+
args = parser.parse_args()
|
127 |
+
return args
|
128 |
+
|
129 |
+
|
130 |
+
def get_input():
|
131 |
+
"""Helper function for getting input from users."""
|
132 |
+
sentinel = '' # ends when this string is seen
|
133 |
+
result = None
|
134 |
+
while result is None:
|
135 |
+
print(('\ndouble enter to end input (EXIT: exit chat, '
|
136 |
+
'RESET: reset history) >>> '),
|
137 |
+
end='')
|
138 |
+
try:
|
139 |
+
result = '\n'.join(iter(input, sentinel))
|
140 |
+
except UnicodeDecodeError:
|
141 |
+
print('Invalid characters detected. Please enter again.')
|
142 |
+
return result
|
143 |
+
|
144 |
+
|
145 |
+
def main():
|
146 |
+
args = parse_args()
|
147 |
+
torch.manual_seed(args.seed)
|
148 |
+
|
149 |
+
# build llm
|
150 |
+
quantization_config = None
|
151 |
+
load_in_8bit = False
|
152 |
+
if args.bits == 4:
|
153 |
+
quantization_config = BitsAndBytesConfig(
|
154 |
+
load_in_4bit=True,
|
155 |
+
load_in_8bit=False,
|
156 |
+
llm_int8_threshold=6.0,
|
157 |
+
llm_int8_has_fp16_weight=False,
|
158 |
+
bnb_4bit_compute_dtype=torch.float16,
|
159 |
+
bnb_4bit_use_double_quant=True,
|
160 |
+
bnb_4bit_quant_type='nf4')
|
161 |
+
elif args.bits == 8:
|
162 |
+
load_in_8bit = True
|
163 |
+
model_kwargs = {
|
164 |
+
'quantization_config': quantization_config,
|
165 |
+
'load_in_8bit': load_in_8bit,
|
166 |
+
'device_map': 'auto',
|
167 |
+
'offload_folder': args.offload_folder,
|
168 |
+
'trust_remote_code': True,
|
169 |
+
'torch_dtype': TORCH_DTYPE_MAP[args.torch_dtype]
|
170 |
+
}
|
171 |
+
if args.lagent:
|
172 |
+
from lagent.actions import ActionExecutor, GoogleSearch
|
173 |
+
from lagent.agents import (CALL_PROTOCOL_CN, FORCE_STOP_PROMPT_CN,
|
174 |
+
ReAct, ReActProtocol)
|
175 |
+
from lagent.llms import HFTransformerCasualLM
|
176 |
+
|
177 |
+
try:
|
178 |
+
SERPER_API_KEY = os.environ['SERPER_API_KEY']
|
179 |
+
except Exception:
|
180 |
+
print('Please obtain the `SERPER_API_KEY` from https://serper.dev '
|
181 |
+
'and set it using `export SERPER_API_KEY=xxx`.')
|
182 |
+
sys.exit(1)
|
183 |
+
|
184 |
+
model_kwargs.pop('trust_remote_code')
|
185 |
+
llm = HFTransformerCasualLM(
|
186 |
+
args.model_name_or_path, model_kwargs=model_kwargs)
|
187 |
+
if args.adapter is not None:
|
188 |
+
print(f'Loading adapter from {args.adapter}...')
|
189 |
+
llm.model = PeftModel.from_pretrained(
|
190 |
+
llm.model,
|
191 |
+
args.adapter,
|
192 |
+
offload_folder=args.offload_folder,
|
193 |
+
trust_remote_code=True)
|
194 |
+
search_tool = GoogleSearch(api_key=SERPER_API_KEY)
|
195 |
+
chatbot = ReAct(
|
196 |
+
llm=llm,
|
197 |
+
action_executor=ActionExecutor(actions=[search_tool]),
|
198 |
+
protocol=ReActProtocol(
|
199 |
+
call_protocol=CALL_PROTOCOL_CN,
|
200 |
+
force_stop=FORCE_STOP_PROMPT_CN))
|
201 |
+
while True:
|
202 |
+
text = get_input()
|
203 |
+
while text.strip() == 'RESET':
|
204 |
+
print('Log: History responses have been removed!')
|
205 |
+
chatbot._session_history = []
|
206 |
+
inputs = ''
|
207 |
+
text = get_input()
|
208 |
+
if text.strip() == 'EXIT':
|
209 |
+
print('Log: Exit!')
|
210 |
+
exit(0)
|
211 |
+
response = chatbot.chat(text)
|
212 |
+
print(response.response)
|
213 |
+
else:
|
214 |
+
if args.with_plugins is None:
|
215 |
+
inner_thoughts_open = False
|
216 |
+
calculate_open = False
|
217 |
+
solve_open = False
|
218 |
+
search_open = False
|
219 |
+
else:
|
220 |
+
assert args.prompt_template == args.system_template == 'moss_sft'
|
221 |
+
from plugins import plugins_api
|
222 |
+
inner_thoughts_open = True
|
223 |
+
calculate_open = 'calculate' in args.with_plugins
|
224 |
+
solve_open = 'solve' in args.with_plugins
|
225 |
+
search_open = 'search' in args.with_plugins
|
226 |
+
# pre-import for api and model preparation
|
227 |
+
if calculate_open:
|
228 |
+
from plugins import calculate # noqa: F401
|
229 |
+
if solve_open:
|
230 |
+
from plugins import solve # noqa: F401
|
231 |
+
if search_open:
|
232 |
+
from plugins import search # noqa: F401
|
233 |
+
# build llm
|
234 |
+
llm = AutoModelForCausalLM.from_pretrained(args.model_name_or_path,
|
235 |
+
**model_kwargs)
|
236 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
237 |
+
args.model_name_or_path,
|
238 |
+
trust_remote_code=True,
|
239 |
+
encode_special_tokens=True)
|
240 |
+
print(f'Load LLM from {args.model_name_or_path}')
|
241 |
+
if args.adapter is not None:
|
242 |
+
llm = PeftModel.from_pretrained(
|
243 |
+
llm,
|
244 |
+
args.adapter,
|
245 |
+
offload_folder=args.offload_folder,
|
246 |
+
trust_remote_code=True)
|
247 |
+
print(f'Load adapter from {args.adapter}')
|
248 |
+
if args.llava is not None:
|
249 |
+
llava_path = snapshot_download(
|
250 |
+
repo_id=args.llava) if not osp.isdir(
|
251 |
+
args.llava) else args.llava
|
252 |
+
|
253 |
+
# build visual_encoder
|
254 |
+
if 'visual_encoder' in os.listdir(llava_path):
|
255 |
+
assert args.visual_encoder is None, (
|
256 |
+
"Please don't specify the `--visual-encoder` since passed "
|
257 |
+
'`--llava` contains a visual encoder!')
|
258 |
+
visual_encoder_path = osp.join(llava_path, 'visual_encoder')
|
259 |
+
else:
|
260 |
+
assert args.visual_encoder is not None, (
|
261 |
+
'Please specify the `--visual-encoder`!')
|
262 |
+
visual_encoder_path = args.visual_encoder
|
263 |
+
visual_encoder = Dinov2Model.from_pretrained(
|
264 |
+
visual_encoder_path,
|
265 |
+
torch_dtype=TORCH_DTYPE_MAP[args.torch_dtype])
|
266 |
+
image_processor = AutoImageProcessor.from_pretrained(
|
267 |
+
visual_encoder_path)
|
268 |
+
print(f'Load visual_encoder from {visual_encoder_path}')
|
269 |
+
|
270 |
+
# load adapter
|
271 |
+
if 'llm_adapter' in os.listdir(llava_path):
|
272 |
+
adapter_path = osp.join(llava_path, 'llm_adapter')
|
273 |
+
llm = PeftModel.from_pretrained(
|
274 |
+
llm,
|
275 |
+
adapter_path,
|
276 |
+
offload_folder=args.offload_folder,
|
277 |
+
trust_remote_code=True)
|
278 |
+
print(f'Load LLM adapter from {args.llava}')
|
279 |
+
if 'visual_encoder_adapter' in os.listdir(llava_path):
|
280 |
+
adapter_path = osp.join(llava_path, 'visual_encoder_adapter')
|
281 |
+
visual_encoder = PeftModel.from_pretrained(
|
282 |
+
visual_encoder,
|
283 |
+
adapter_path,
|
284 |
+
offload_folder=args.offload_folder)
|
285 |
+
print(f'Load visual_encoder adapter from {args.llava}')
|
286 |
+
|
287 |
+
# build projector
|
288 |
+
projector_path = osp.join(llava_path, 'projector')
|
289 |
+
projector = AutoModel.from_pretrained(
|
290 |
+
projector_path,
|
291 |
+
torch_dtype=TORCH_DTYPE_MAP[args.torch_dtype],
|
292 |
+
trust_remote_code=True)
|
293 |
+
print(f'Load projector from {args.llava}')
|
294 |
+
|
295 |
+
projector.cuda()
|
296 |
+
projector.eval()
|
297 |
+
visual_encoder.cuda()
|
298 |
+
visual_encoder.eval()
|
299 |
+
|
300 |
+
llm.eval()
|
301 |
+
|
302 |
+
if args.image is not None:
|
303 |
+
image = load_image(args.image)
|
304 |
+
image = expand2square(
|
305 |
+
image, tuple(int(x * 255) for x in image_processor.image_mean))
|
306 |
+
image = image_processor.preprocess(
|
307 |
+
image, return_tensors='pt')['pixel_values'][0]
|
308 |
+
image = image.cuda().unsqueeze(0)
|
309 |
+
visual_outputs = visual_encoder(image, output_hidden_states=True)
|
310 |
+
pixel_values = projector(
|
311 |
+
visual_outputs.hidden_states[args.visual_select_layer][:, 1:])
|
312 |
+
|
313 |
+
stop_words = args.stop_words
|
314 |
+
sep = ''
|
315 |
+
if args.prompt_template:
|
316 |
+
template = PROMPT_TEMPLATE[args.prompt_template]
|
317 |
+
stop_words += template.get('STOP_WORDS', [])
|
318 |
+
sep = template.get('SEP', '')
|
319 |
+
stop_criteria = get_stop_criteria(
|
320 |
+
tokenizer=tokenizer, stop_words=stop_words)
|
321 |
+
|
322 |
+
if args.no_streamer:
|
323 |
+
Streamer = None
|
324 |
+
else:
|
325 |
+
Streamer = get_streamer(llm)
|
326 |
+
|
327 |
+
gen_config = GenerationConfig(
|
328 |
+
max_new_tokens=args.max_new_tokens,
|
329 |
+
do_sample=args.temperature > 0,
|
330 |
+
temperature=args.temperature,
|
331 |
+
top_p=args.top_p,
|
332 |
+
top_k=args.top_k,
|
333 |
+
repetition_penalty=args.repetition_penalty,
|
334 |
+
eos_token_id=tokenizer.eos_token_id,
|
335 |
+
pad_token_id=tokenizer.pad_token_id
|
336 |
+
if tokenizer.pad_token_id is not None else tokenizer.eos_token_id,
|
337 |
+
)
|
338 |
+
|
339 |
+
n_turn = 0
|
340 |
+
inputs = ''
|
341 |
+
while True:
|
342 |
+
text = get_input()
|
343 |
+
while text.strip() == 'RESET':
|
344 |
+
print('Log: History responses have been removed!')
|
345 |
+
n_turn = 0
|
346 |
+
inputs = ''
|
347 |
+
text = get_input()
|
348 |
+
if text.strip() == 'EXIT':
|
349 |
+
print('Log: Exit!')
|
350 |
+
exit(0)
|
351 |
+
|
352 |
+
if args.image is not None and n_turn == 0:
|
353 |
+
text = DEFAULT_IMAGE_TOKEN + '\n' + text
|
354 |
+
|
355 |
+
if args.prompt_template:
|
356 |
+
prompt_text = ''
|
357 |
+
template = PROMPT_TEMPLATE[args.prompt_template]
|
358 |
+
if 'SYSTEM' in template and n_turn == 0:
|
359 |
+
system_text = None
|
360 |
+
if args.system_template is not None:
|
361 |
+
system_text = SYSTEM_TEMPLATE[
|
362 |
+
args.system_template].format(
|
363 |
+
round=n_turn + 1, bot_name=args.bot_name)
|
364 |
+
elif args.system is not None:
|
365 |
+
system_text = args.system
|
366 |
+
if system_text is not None:
|
367 |
+
prompt_text += template['SYSTEM'].format(
|
368 |
+
system=system_text,
|
369 |
+
round=n_turn + 1,
|
370 |
+
bot_name=args.bot_name)
|
371 |
+
prompt_text += template['INSTRUCTION'].format(
|
372 |
+
input=text, round=n_turn + 1, bot_name=args.bot_name)
|
373 |
+
if args.prompt_template == args.system_template == 'moss_sft':
|
374 |
+
if not inner_thoughts_open:
|
375 |
+
prompt_text.replace('- Inner thoughts: enabled.',
|
376 |
+
'- Inner thoughts: disabled.')
|
377 |
+
if not calculate_open:
|
378 |
+
prompt_text.replace(('- Calculator: enabled. API: '
|
379 |
+
'Calculate(expression)'),
|
380 |
+
'- Calculator: disabled.')
|
381 |
+
if not solve_open:
|
382 |
+
prompt_text.replace(
|
383 |
+
'- Equation solver: enabled. API: Solve(equation)',
|
384 |
+
'- Equation solver: disabled.')
|
385 |
+
if not search_open:
|
386 |
+
prompt_text.replace(
|
387 |
+
'- Web search: enabled. API: Search(query)',
|
388 |
+
'- Web search: disabled.')
|
389 |
+
else:
|
390 |
+
prompt_text = text
|
391 |
+
inputs += prompt_text
|
392 |
+
if args.image is None:
|
393 |
+
if n_turn == 0:
|
394 |
+
ids = tokenizer.encode(inputs, return_tensors='pt')
|
395 |
+
else:
|
396 |
+
ids = tokenizer.encode(
|
397 |
+
inputs, return_tensors='pt', add_special_tokens=False)
|
398 |
+
streamer = Streamer(
|
399 |
+
tokenizer) if Streamer is not None else None
|
400 |
+
if args.with_plugins is not None:
|
401 |
+
generate_output = llm.generate(
|
402 |
+
inputs=ids.cuda(),
|
403 |
+
generation_config=gen_config,
|
404 |
+
streamer=streamer,
|
405 |
+
stopping_criteria=stop_criteria).cpu()
|
406 |
+
generate_output_text = tokenizer.decode(
|
407 |
+
generate_output[0][len(ids[0]):])
|
408 |
+
if streamer is None:
|
409 |
+
end = '' if generate_output_text[-1] == '\n' else '\n'
|
410 |
+
print(generate_output_text, end=end)
|
411 |
+
pattern = r'<\|Commands\|>:(.*?)<eoc>'
|
412 |
+
command_text = ', '.join(
|
413 |
+
re.findall(pattern, generate_output_text))
|
414 |
+
extent_text = plugins_api(
|
415 |
+
command_text,
|
416 |
+
calculate_open=calculate_open,
|
417 |
+
solve_open=solve_open,
|
418 |
+
search_open=search_open)
|
419 |
+
end = '' if extent_text[-1] == '\n' else '\n'
|
420 |
+
print(extent_text, end=end)
|
421 |
+
extent_text_ids = tokenizer.encode(
|
422 |
+
extent_text,
|
423 |
+
return_tensors='pt',
|
424 |
+
add_special_tokens=False)
|
425 |
+
new_ids = torch.cat((generate_output, extent_text_ids),
|
426 |
+
dim=1)
|
427 |
+
new_streamer = Streamer(
|
428 |
+
tokenizer) if Streamer is not None else None
|
429 |
+
generate_output = llm.generate(
|
430 |
+
inputs=new_ids.cuda(),
|
431 |
+
generation_config=gen_config,
|
432 |
+
streamer=new_streamer,
|
433 |
+
stopping_criteria=stop_criteria)
|
434 |
+
if streamer is None:
|
435 |
+
output_text = tokenizer.decode(
|
436 |
+
generate_output[0][len(new_ids[0]):])
|
437 |
+
end = '' if output_text[-1] == '\n' else '\n'
|
438 |
+
print(output_text, end=end)
|
439 |
+
else:
|
440 |
+
generate_output = llm.generate(
|
441 |
+
inputs=ids.cuda(),
|
442 |
+
generation_config=gen_config,
|
443 |
+
streamer=streamer,
|
444 |
+
stopping_criteria=stop_criteria)
|
445 |
+
if streamer is None:
|
446 |
+
output_text = tokenizer.decode(
|
447 |
+
generate_output[0][len(ids[0]):])
|
448 |
+
end = '' if output_text[-1] == '\n' else '\n'
|
449 |
+
print(output_text, end=end)
|
450 |
+
inputs = tokenizer.decode(generate_output[0])
|
451 |
+
else:
|
452 |
+
chunk_encode = []
|
453 |
+
for idx, chunk in enumerate(inputs.split(DEFAULT_IMAGE_TOKEN)):
|
454 |
+
if idx == 0 and n_turn == 0:
|
455 |
+
cur_encode = tokenizer.encode(chunk)
|
456 |
+
else:
|
457 |
+
cur_encode = tokenizer.encode(
|
458 |
+
chunk, add_special_tokens=False)
|
459 |
+
chunk_encode.append(cur_encode)
|
460 |
+
assert len(chunk_encode) == 2
|
461 |
+
ids = []
|
462 |
+
for idx, cur_chunk_encode in enumerate(chunk_encode):
|
463 |
+
ids.extend(cur_chunk_encode)
|
464 |
+
if idx != len(chunk_encode) - 1:
|
465 |
+
ids.append(IMAGE_TOKEN_INDEX)
|
466 |
+
ids = torch.tensor(ids).cuda().unsqueeze(0)
|
467 |
+
mm_inputs = prepare_inputs_labels_for_multimodal(
|
468 |
+
llm=llm, input_ids=ids, pixel_values=pixel_values)
|
469 |
+
|
470 |
+
streamer = Streamer(
|
471 |
+
tokenizer) if Streamer is not None else None
|
472 |
+
generate_output = llm.generate(
|
473 |
+
**mm_inputs,
|
474 |
+
generation_config=gen_config,
|
475 |
+
streamer=streamer,
|
476 |
+
bos_token_id=tokenizer.bos_token_id,
|
477 |
+
stopping_criteria=stop_criteria)
|
478 |
+
if streamer is None:
|
479 |
+
output_text = tokenizer.decode(generate_output[0])
|
480 |
+
end = '' if output_text[-1] == '\n' else '\n'
|
481 |
+
print(output_text, end=end)
|
482 |
+
inputs += tokenizer.decode(generate_output[0])
|
483 |
+
n_turn += 1
|
484 |
+
inputs += sep
|
485 |
+
if len(generate_output[0]) >= args.max_new_tokens:
|
486 |
+
print(
|
487 |
+
'Remove the memory of history responses, since '
|
488 |
+
f'it exceeds the length limitation {args.max_new_tokens}.')
|
489 |
+
n_turn = 0
|
490 |
+
inputs = ''
|
491 |
+
|
492 |
+
|
493 |
+
if __name__ == '__main__':
|
494 |
+
main()
|
modified_xtuner_code/xtuner/tools/mmbench.py
ADDED
@@ -0,0 +1,510 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import argparse
|
3 |
+
import json
|
4 |
+
import math
|
5 |
+
import os
|
6 |
+
import os.path as osp
|
7 |
+
import re
|
8 |
+
import string
|
9 |
+
import time
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
import pandas as pd
|
13 |
+
import torch
|
14 |
+
import tqdm
|
15 |
+
from huggingface_hub import snapshot_download
|
16 |
+
from mmengine import mkdir_or_exist
|
17 |
+
from mmengine.dist import (collect_results, get_dist_info, get_rank, init_dist,
|
18 |
+
master_only)
|
19 |
+
from mmengine.utils.dl_utils import set_multi_processing
|
20 |
+
from peft import PeftModel
|
21 |
+
from rich.console import Console
|
22 |
+
from rich.table import Table
|
23 |
+
from torch.utils.data import Dataset
|
24 |
+
from transformers import (AutoModel, AutoModelForCausalLM, AutoTokenizer,
|
25 |
+
BitsAndBytesConfig, AutoImageProcessor,
|
26 |
+
Dinov2Model, GenerationConfig)
|
27 |
+
|
28 |
+
from xtuner.dataset.utils import decode_base64_to_image, expand2square
|
29 |
+
from xtuner.model.utils import LoadWoInit, prepare_inputs_labels_for_multimodal
|
30 |
+
from xtuner.tools.utils import get_stop_criteria, is_cn_string
|
31 |
+
from xtuner.utils import (DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX,
|
32 |
+
PROMPT_TEMPLATE)
|
33 |
+
|
34 |
+
TORCH_DTYPE_MAP = dict(
|
35 |
+
fp16=torch.float16, bf16=torch.bfloat16, fp32=torch.float32, auto='auto')
|
36 |
+
|
37 |
+
|
38 |
+
def parse_args():
|
39 |
+
parser = argparse.ArgumentParser(description='MMBench')
|
40 |
+
parser.add_argument(
|
41 |
+
'model_name_or_path', help='Hugging Face model name or path')
|
42 |
+
parser.add_argument('--data-path', default=None, help='data path')
|
43 |
+
parser.add_argument('--work-dir', help='the dir to save results')
|
44 |
+
parser.add_argument('--llava', default=None, help='llava name or path')
|
45 |
+
parser.add_argument(
|
46 |
+
'--visual-encoder', default=None, help='visual encoder name or path')
|
47 |
+
parser.add_argument(
|
48 |
+
'--visual-select-layer', default=-2, help='visual select layer')
|
49 |
+
parser.add_argument(
|
50 |
+
'--prompt-template',
|
51 |
+
choices=PROMPT_TEMPLATE.keys(),
|
52 |
+
default=None,
|
53 |
+
help='Specify a prompt template')
|
54 |
+
parser.add_argument(
|
55 |
+
'--stop-words', nargs='+', type=str, default=[], help='Stop words')
|
56 |
+
parser.add_argument(
|
57 |
+
'--torch-dtype',
|
58 |
+
default='fp16',
|
59 |
+
choices=TORCH_DTYPE_MAP.keys(),
|
60 |
+
help='Override the default `torch.dtype` and load the model under '
|
61 |
+
'a specific `dtype`.')
|
62 |
+
parser.add_argument(
|
63 |
+
'--bits',
|
64 |
+
type=int,
|
65 |
+
choices=[4, 8, None],
|
66 |
+
default=None,
|
67 |
+
help='LLM bits')
|
68 |
+
parser.add_argument(
|
69 |
+
'--bot-name', type=str, default='BOT', help='Name for Bot')
|
70 |
+
parser.add_argument(
|
71 |
+
'--offload-folder',
|
72 |
+
default=None,
|
73 |
+
help='The folder in which to offload the model weights (or where the '
|
74 |
+
'model weights are already offloaded).')
|
75 |
+
parser.add_argument(
|
76 |
+
'--max-new-tokens',
|
77 |
+
type=int,
|
78 |
+
default=100,
|
79 |
+
help='Maximum number of new tokens allowed in generated text')
|
80 |
+
parser.add_argument(
|
81 |
+
'--seed',
|
82 |
+
type=int,
|
83 |
+
default=0,
|
84 |
+
help='Random seed for reproducible text generation')
|
85 |
+
parser.add_argument(
|
86 |
+
'--launcher',
|
87 |
+
choices=['none', 'pytorch', 'slurm', 'mpi'],
|
88 |
+
default='none',
|
89 |
+
help='job launcher')
|
90 |
+
args = parser.parse_args()
|
91 |
+
return args
|
92 |
+
|
93 |
+
|
94 |
+
@master_only
|
95 |
+
def master_print(msg):
|
96 |
+
print(msg)
|
97 |
+
|
98 |
+
|
99 |
+
class MMBenchDataset(Dataset):
|
100 |
+
ABBRS = {
|
101 |
+
'coarse_perception': 'CP',
|
102 |
+
'finegrained_perception (instance-level)': 'FP-S',
|
103 |
+
'finegrained_perception (cross-instance)': 'FP-C',
|
104 |
+
'logic_reasoning': 'LR',
|
105 |
+
'relation_reasoning': 'RR',
|
106 |
+
'attribute_reasoning': 'AR',
|
107 |
+
'sketch_reasoning': 'Sketch Reasoning',
|
108 |
+
'scenery_building': 'Scenery & Building',
|
109 |
+
'food_clothes': 'Food & Clothes',
|
110 |
+
'historical_figure': 'Historical Figure',
|
111 |
+
'traditional_show': 'Traditional Show',
|
112 |
+
'calligraphy_painting': 'Calligraphy Painting',
|
113 |
+
'cultural_relic': 'Cultural Relic'
|
114 |
+
}
|
115 |
+
|
116 |
+
def __init__(self, data_file):
|
117 |
+
self.data_file = data_file
|
118 |
+
self.df = pd.read_csv(data_file, sep='\t')
|
119 |
+
self.split = 'dev' if 'answer' in self.df.iloc[0].keys() else 'test'
|
120 |
+
self.has_l2_category = 'l2-category' in self.df.columns.to_list()
|
121 |
+
|
122 |
+
def get_image(self, image):
|
123 |
+
while len(image) < 16:
|
124 |
+
image = self.df[self.df['index'] == int(image)]['image'].values
|
125 |
+
assert len(image) == 1
|
126 |
+
image = image[0]
|
127 |
+
image = decode_base64_to_image(image)
|
128 |
+
return image
|
129 |
+
|
130 |
+
def __len__(self):
|
131 |
+
return len(self.df)
|
132 |
+
|
133 |
+
def __getitem__(self, idx):
|
134 |
+
index = self.df.iloc[idx]['index']
|
135 |
+
image = self.df.iloc[idx]['image']
|
136 |
+
image = self.get_image(image)
|
137 |
+
question = self.df.iloc[idx]['question']
|
138 |
+
answer = self.df.iloc[idx]['answer'] if 'answer' in self.df.iloc[
|
139 |
+
0].keys() else None
|
140 |
+
category = self.df.iloc[idx]['category']
|
141 |
+
|
142 |
+
options = {
|
143 |
+
cand: self.load_from_df(idx, cand)
|
144 |
+
for cand in string.ascii_uppercase
|
145 |
+
if self.load_from_df(idx, cand) is not None
|
146 |
+
}
|
147 |
+
options_prompt = ''
|
148 |
+
for key, item in options.items():
|
149 |
+
options_prompt += f'{key}. {item}\n'
|
150 |
+
|
151 |
+
hint = self.load_from_df(idx, 'hint')
|
152 |
+
data = {
|
153 |
+
'img': image,
|
154 |
+
'question': question,
|
155 |
+
'answer': answer,
|
156 |
+
'options': options_prompt,
|
157 |
+
'category': category,
|
158 |
+
'options_dict': options,
|
159 |
+
'index': index,
|
160 |
+
'context': hint,
|
161 |
+
}
|
162 |
+
if self.has_l2_category:
|
163 |
+
data.update({'l2-category': self.df.iloc[idx]['l2-category']})
|
164 |
+
return data
|
165 |
+
|
166 |
+
def load_from_df(self, idx, key):
|
167 |
+
if key in self.df.iloc[idx] and not pd.isna(self.df.iloc[idx][key]):
|
168 |
+
return self.df.iloc[idx][key]
|
169 |
+
else:
|
170 |
+
return None
|
171 |
+
|
172 |
+
@master_only
|
173 |
+
def eval_result(self, result_df, show=True):
|
174 |
+
|
175 |
+
def calc_acc(df, group='category'):
|
176 |
+
assert group in ['overall', 'category', 'l2-category']
|
177 |
+
if group == 'overall':
|
178 |
+
res = {'Average': np.mean(df['hit'])}
|
179 |
+
else:
|
180 |
+
res = {}
|
181 |
+
abilities = list(set(df[group]))
|
182 |
+
abilities.sort()
|
183 |
+
for ab in abilities:
|
184 |
+
sub_df = df[df[group] == ab]
|
185 |
+
ab = self.ABBRS[ab] if ab in self.ABBRS else ab
|
186 |
+
res[ab] = np.mean(sub_df['hit'])
|
187 |
+
return res
|
188 |
+
|
189 |
+
def eval_sub_data(sub_data, answer_map):
|
190 |
+
lt = len(sub_data)
|
191 |
+
for i in range(lt):
|
192 |
+
item = sub_data.iloc[i]
|
193 |
+
match = re.search(r'([A-D]+)', item['prediction'])
|
194 |
+
pred = match.group(1) if match else ''
|
195 |
+
gt = answer_map[item['index']]
|
196 |
+
if gt != pred:
|
197 |
+
return 0
|
198 |
+
return 1
|
199 |
+
|
200 |
+
def show_result(ret_json):
|
201 |
+
show_dict = ret_json.copy()
|
202 |
+
table = Table(title=f' MMBench ({self.data_file}) ')
|
203 |
+
console = Console()
|
204 |
+
table.add_column('Category', justify='left')
|
205 |
+
table.add_column('Accuracy (%)', justify='right')
|
206 |
+
average = show_dict.pop('Average') * 100
|
207 |
+
table.add_row('Average', f'{average:.1f}')
|
208 |
+
table.add_section()
|
209 |
+
for cat_name, cat_acc in show_dict.items():
|
210 |
+
table.add_row(cat_name, f'{cat_acc * 100:.1f}')
|
211 |
+
with console.capture() as capture:
|
212 |
+
console.print(table, end='')
|
213 |
+
print('\n' + capture.get())
|
214 |
+
print('Note: Please be cautious if you use the results in papers, '
|
215 |
+
"since we don't use ChatGPT as a helper for choice "
|
216 |
+
'extraction')
|
217 |
+
|
218 |
+
data = result_df.sort_values(by='index')
|
219 |
+
data['prediction'] = [str(x) for x in data['prediction']]
|
220 |
+
for k in data.keys():
|
221 |
+
data[k.lower() if k not in 'ABCD' else k] = data.pop(k)
|
222 |
+
|
223 |
+
data_main = data[data['index'] < int(1e6)]
|
224 |
+
cate_map = {
|
225 |
+
i: c
|
226 |
+
for i, c in zip(self.df['index'], self.df['category'])
|
227 |
+
}
|
228 |
+
if self.has_l2_category:
|
229 |
+
l2_cate_map = {
|
230 |
+
i: c
|
231 |
+
for i, c in zip(self.df['index'], self.df['l2-category'])
|
232 |
+
}
|
233 |
+
answer_map = {
|
234 |
+
i: c
|
235 |
+
for i, c in zip(self.df['index'], self.df['answer'])
|
236 |
+
}
|
237 |
+
|
238 |
+
lt = len(data_main)
|
239 |
+
hit, tot = 0, 0
|
240 |
+
result = {}
|
241 |
+
for i in range(lt):
|
242 |
+
item_main = data_main.iloc[i]
|
243 |
+
idx = item_main['index']
|
244 |
+
assert idx not in result
|
245 |
+
sub_data = data[data['index'] % int(1e6) == idx]
|
246 |
+
ret = eval_sub_data(sub_data, answer_map)
|
247 |
+
result[idx] = ret
|
248 |
+
hit += ret
|
249 |
+
tot += 1
|
250 |
+
|
251 |
+
indices = data_main['index']
|
252 |
+
data_main = data_main.copy()
|
253 |
+
data_main['hit'] = [result[i] for i in indices]
|
254 |
+
main_idx = data_main['index']
|
255 |
+
data_main['category'] = [cate_map[i] for i in main_idx]
|
256 |
+
|
257 |
+
ret_json = calc_acc(data_main, 'overall')
|
258 |
+
|
259 |
+
if self.has_l2_category:
|
260 |
+
data_main['l2-category'] = [l2_cate_map[i] for i in main_idx]
|
261 |
+
l2 = calc_acc(data_main, 'l2-category')
|
262 |
+
ret_json.update(l2)
|
263 |
+
else:
|
264 |
+
leaf = calc_acc(data_main, 'category')
|
265 |
+
ret_json.update(leaf)
|
266 |
+
if show:
|
267 |
+
show_result(ret_json)
|
268 |
+
return ret_json
|
269 |
+
|
270 |
+
|
271 |
+
def main():
|
272 |
+
args = parse_args()
|
273 |
+
|
274 |
+
torch.manual_seed(args.seed)
|
275 |
+
|
276 |
+
if args.launcher != 'none':
|
277 |
+
set_multi_processing(distributed=True)
|
278 |
+
init_dist(args.launcher)
|
279 |
+
|
280 |
+
rank, world_size = get_dist_info()
|
281 |
+
torch.cuda.set_device(rank)
|
282 |
+
else:
|
283 |
+
rank = 0
|
284 |
+
world_size = 1
|
285 |
+
|
286 |
+
# build llm
|
287 |
+
quantization_config = None
|
288 |
+
load_in_8bit = False
|
289 |
+
if args.bits == 4:
|
290 |
+
quantization_config = BitsAndBytesConfig(
|
291 |
+
load_in_4bit=True,
|
292 |
+
load_in_8bit=False,
|
293 |
+
llm_int8_threshold=6.0,
|
294 |
+
llm_int8_has_fp16_weight=False,
|
295 |
+
bnb_4bit_compute_dtype=torch.float16,
|
296 |
+
bnb_4bit_use_double_quant=True,
|
297 |
+
bnb_4bit_quant_type='nf4')
|
298 |
+
elif args.bits == 8:
|
299 |
+
load_in_8bit = True
|
300 |
+
model_kwargs = {
|
301 |
+
'quantization_config': quantization_config,
|
302 |
+
'load_in_8bit': load_in_8bit,
|
303 |
+
'device_map': rank if world_size > 1 else 'auto',
|
304 |
+
'offload_folder': args.offload_folder,
|
305 |
+
'trust_remote_code': True,
|
306 |
+
'torch_dtype': TORCH_DTYPE_MAP[args.torch_dtype]
|
307 |
+
}
|
308 |
+
|
309 |
+
# build llm
|
310 |
+
with LoadWoInit():
|
311 |
+
llm = AutoModelForCausalLM.from_pretrained(args.model_name_or_path,
|
312 |
+
**model_kwargs)
|
313 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
314 |
+
args.model_name_or_path,
|
315 |
+
trust_remote_code=True,
|
316 |
+
encode_special_tokens=True)
|
317 |
+
master_print(f'Load LLM from {args.model_name_or_path}')
|
318 |
+
|
319 |
+
llava_path = snapshot_download(
|
320 |
+
repo_id=args.llava) if not osp.isdir(args.llava) else args.llava
|
321 |
+
|
322 |
+
# build visual_encoder
|
323 |
+
if 'visual_encoder' in os.listdir(llava_path):
|
324 |
+
assert args.visual_encoder is None, (
|
325 |
+
"Please don't specify the `--visual-encoder` since passed "
|
326 |
+
'`--llava` contains a visual encoder!')
|
327 |
+
visual_encoder_path = osp.join(llava_path, 'visual_encoder')
|
328 |
+
else:
|
329 |
+
assert args.visual_encoder is not None, (
|
330 |
+
'Please specify the `--visual-encoder`!')
|
331 |
+
visual_encoder_path = args.visual_encoder
|
332 |
+
with LoadWoInit():
|
333 |
+
visual_encoder = Dinov2Model.from_pretrained(
|
334 |
+
visual_encoder_path, torch_dtype=TORCH_DTYPE_MAP[args.torch_dtype])
|
335 |
+
image_processor = AutoImageProcessor.from_pretrained(
|
336 |
+
visual_encoder_path)
|
337 |
+
master_print(f'Load visual_encoder from {visual_encoder_path}')
|
338 |
+
|
339 |
+
# load adapter
|
340 |
+
if 'llm_adapter' in os.listdir(llava_path):
|
341 |
+
adapter_path = osp.join(llava_path, 'llm_adapter')
|
342 |
+
|
343 |
+
with LoadWoInit():
|
344 |
+
llm = PeftModel.from_pretrained(
|
345 |
+
llm, adapter_path, offload_folder=args.offload_folder)
|
346 |
+
|
347 |
+
master_print(f'Load LLM adapter from {args.llava}')
|
348 |
+
|
349 |
+
if 'visual_encoder_adapter' in os.listdir(llava_path):
|
350 |
+
adapter_path = osp.join(llava_path, 'visual_encoder_adapter')
|
351 |
+
visual_encoder = PeftModel.from_pretrained(
|
352 |
+
visual_encoder, adapter_path, offload_folder=args.offload_folder)
|
353 |
+
master_print(f'Load visual_encoder adapter from {args.llava}')
|
354 |
+
|
355 |
+
# build projector
|
356 |
+
projector_path = osp.join(llava_path, 'projector')
|
357 |
+
with LoadWoInit():
|
358 |
+
projector = AutoModel.from_pretrained(
|
359 |
+
projector_path, torch_dtype=TORCH_DTYPE_MAP[args.torch_dtype])
|
360 |
+
master_print(f'Load projector from {args.llava}')
|
361 |
+
|
362 |
+
projector.cuda()
|
363 |
+
projector.eval()
|
364 |
+
|
365 |
+
visual_encoder.cuda()
|
366 |
+
visual_encoder.eval()
|
367 |
+
|
368 |
+
llm.eval()
|
369 |
+
|
370 |
+
stop_words = args.stop_words
|
371 |
+
if args.prompt_template:
|
372 |
+
template = PROMPT_TEMPLATE[args.prompt_template]
|
373 |
+
stop_words += template.get('STOP_WORDS', [])
|
374 |
+
stop_criteria = get_stop_criteria(
|
375 |
+
tokenizer=tokenizer, stop_words=stop_words)
|
376 |
+
|
377 |
+
gen_config = GenerationConfig(
|
378 |
+
max_new_tokens=args.max_new_tokens,
|
379 |
+
do_sample=False,
|
380 |
+
eos_token_id=tokenizer.eos_token_id,
|
381 |
+
pad_token_id=tokenizer.pad_token_id
|
382 |
+
if tokenizer.pad_token_id is not None else tokenizer.eos_token_id,
|
383 |
+
)
|
384 |
+
|
385 |
+
# work_dir
|
386 |
+
if args.work_dir is not None:
|
387 |
+
# update configs according to CLI args if args.work_dir is not None
|
388 |
+
save_dir = args.work_dir
|
389 |
+
else:
|
390 |
+
# use config filename as default work_dir
|
391 |
+
save_dir = osp.join('./work_dirs',
|
392 |
+
osp.splitext(osp.basename(args.data_path))[0])
|
393 |
+
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime(time.time()))
|
394 |
+
save_dir = osp.join(save_dir, timestamp)
|
395 |
+
|
396 |
+
if rank == 0:
|
397 |
+
mkdir_or_exist(osp.abspath(save_dir))
|
398 |
+
print('=======================================================')
|
399 |
+
print(f'Dataset path: {osp.abspath(args.data_path)}\n'
|
400 |
+
f'Results will be saved to {osp.abspath(save_dir)}')
|
401 |
+
print('=======================================================')
|
402 |
+
|
403 |
+
args_path = osp.join(save_dir, 'args.json')
|
404 |
+
with open(args_path, 'w') as f:
|
405 |
+
json.dump(args.__dict__, f, indent=2)
|
406 |
+
|
407 |
+
results_xlsx_path = osp.join(save_dir, 'mmbench_result.xlsx')
|
408 |
+
results_json_path = osp.join(save_dir, 'mmbench_result.json')
|
409 |
+
|
410 |
+
dataset = MMBenchDataset(args.data_path)
|
411 |
+
|
412 |
+
results = []
|
413 |
+
n_samples = len(dataset)
|
414 |
+
per_rank_samples = math.ceil(n_samples / world_size)
|
415 |
+
|
416 |
+
per_rank_ids = range(per_rank_samples * rank,
|
417 |
+
min(n_samples, per_rank_samples * (rank + 1)))
|
418 |
+
for i in tqdm.tqdm(per_rank_ids, desc=f'Rank {rank}'):
|
419 |
+
data_sample = dataset[i]
|
420 |
+
if data_sample['context'] is not None:
|
421 |
+
text = data_sample['context'] + '\n' + data_sample[
|
422 |
+
'question'] + '\n' + data_sample['options']
|
423 |
+
else:
|
424 |
+
text = data_sample['question'] + '\n' + data_sample['options']
|
425 |
+
|
426 |
+
text = DEFAULT_IMAGE_TOKEN + '\n' + text
|
427 |
+
|
428 |
+
if is_cn_string(text):
|
429 |
+
text = text + '请直接回答选项字母。'
|
430 |
+
else:
|
431 |
+
text = text + ("Answer with the option's letter from the "
|
432 |
+
'given choices directly.')
|
433 |
+
|
434 |
+
if args.prompt_template:
|
435 |
+
prompt_text = ''
|
436 |
+
template = PROMPT_TEMPLATE[args.prompt_template]
|
437 |
+
prompt_text += template['INSTRUCTION'].format(
|
438 |
+
input=text, round=1, bot_name=args.bot_name)
|
439 |
+
else:
|
440 |
+
prompt_text = text
|
441 |
+
inputs = prompt_text
|
442 |
+
|
443 |
+
image = data_sample['img'].convert('RGB')
|
444 |
+
image = expand2square(
|
445 |
+
image, tuple(int(x * 255) for x in image_processor.image_mean))
|
446 |
+
image = image_processor.preprocess(
|
447 |
+
image, return_tensors='pt')['pixel_values'][0]
|
448 |
+
image = image.cuda().unsqueeze(0)
|
449 |
+
visual_outputs = visual_encoder(image, output_hidden_states=True)
|
450 |
+
pixel_values = projector(
|
451 |
+
visual_outputs.hidden_states[args.visual_select_layer][:, 1:])
|
452 |
+
|
453 |
+
chunk_encode = []
|
454 |
+
for idx, chunk in enumerate(inputs.split(DEFAULT_IMAGE_TOKEN)):
|
455 |
+
if idx == 0:
|
456 |
+
cur_encode = tokenizer.encode(chunk)
|
457 |
+
else:
|
458 |
+
cur_encode = tokenizer.encode(chunk, add_special_tokens=False)
|
459 |
+
chunk_encode.append(cur_encode)
|
460 |
+
assert len(chunk_encode) == 2
|
461 |
+
ids = []
|
462 |
+
for idx, cur_chunk_encode in enumerate(chunk_encode):
|
463 |
+
ids.extend(cur_chunk_encode)
|
464 |
+
if idx != len(chunk_encode) - 1:
|
465 |
+
ids.append(IMAGE_TOKEN_INDEX)
|
466 |
+
ids = torch.tensor(ids).cuda().unsqueeze(0)
|
467 |
+
mm_inputs = prepare_inputs_labels_for_multimodal(
|
468 |
+
llm=llm, input_ids=ids, pixel_values=pixel_values)
|
469 |
+
|
470 |
+
generate_output = llm.generate(
|
471 |
+
**mm_inputs,
|
472 |
+
generation_config=gen_config,
|
473 |
+
streamer=None,
|
474 |
+
bos_token_id=tokenizer.bos_token_id,
|
475 |
+
stopping_criteria=stop_criteria)
|
476 |
+
|
477 |
+
predict = tokenizer.decode(
|
478 |
+
generate_output[0], skip_special_tokens=True).strip()
|
479 |
+
cur_result = {}
|
480 |
+
cur_result['question'] = data_sample.get('question')
|
481 |
+
cur_result.update(data_sample.get('options_dict'))
|
482 |
+
cur_result['prediction'] = predict
|
483 |
+
if data_sample.get('category') is not None:
|
484 |
+
cur_result['category'] = data_sample.get('category')
|
485 |
+
if data_sample.get('l2-category') is not None:
|
486 |
+
cur_result['l2-category'] = data_sample.get('l2-category')
|
487 |
+
cur_result['index'] = data_sample.get('index')
|
488 |
+
cur_result['split'] = data_sample.get('split')
|
489 |
+
cur_result['answer'] = data_sample.get('answer')
|
490 |
+
results.append(cur_result)
|
491 |
+
|
492 |
+
results = collect_results(results, n_samples)
|
493 |
+
|
494 |
+
if get_rank() == 0:
|
495 |
+
|
496 |
+
results_df = pd.DataFrame(results)
|
497 |
+
with pd.ExcelWriter(results_xlsx_path, engine='openpyxl') as writer:
|
498 |
+
results_df.to_excel(writer, index=False)
|
499 |
+
|
500 |
+
if dataset.split == 'dev':
|
501 |
+
results_dict = dataset.eval_result(results_df, show=True)
|
502 |
+
with open(results_json_path, 'w') as f:
|
503 |
+
json.dump(results_dict, f, indent=2)
|
504 |
+
else:
|
505 |
+
print('All done!')
|
506 |
+
|
507 |
+
|
508 |
+
if __name__ == '__main__':
|
509 |
+
|
510 |
+
main()
|