Phi-2

This model is a fine-tuned version of microsoft/phi-2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0781

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 2048
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 12.0

Training results

Training Loss Epoch Step Validation Loss
0.2903 0.64 25 0.1770
0.1566 1.28 50 0.1319
0.1379 1.92 75 0.1253
0.1246 2.56 100 0.1165
0.1159 3.2 125 0.1049
0.1048 3.84 150 0.0998
0.0947 4.48 175 0.0949
0.0872 5.12 200 0.0906
0.0836 5.76 225 0.0890
0.0774 6.39 250 0.0850
0.0717 7.03 275 0.0827
0.0639 7.67 300 0.0807
0.0596 8.31 325 0.0789
0.0555 8.95 350 0.0773
0.0498 9.59 375 0.0777
0.0491 10.23 400 0.0781
0.0467 10.87 425 0.0780
0.0459 11.51 450 0.0781

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
20
Safetensors
Model size
2.78B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for StanfordAIMI/GREEN-Phi2

Base model

microsoft/phi-2
Finetuned
(287)
this model
Quantizations
1 model

Collection including StanfordAIMI/GREEN-Phi2