File size: 13,705 Bytes
fd5bad1 |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7bcb246abf40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bcb246b4040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bcb246b40d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bcb246b4160>", "_build": "<function ActorCriticPolicy._build at 0x7bcb246b41f0>", "forward": "<function ActorCriticPolicy.forward at 0x7bcb246b4280>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bcb246b4310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bcb246b43a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7bcb246b4430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bcb246b44c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bcb246b4550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bcb246b45e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bcb2464e000>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1715778673463340014, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0jrLygY7k/e9txvgpNoD1SgsM8hoJYPQAAAAAAAAAAmsQnvZDXqz+keI+9UbrKvmsw2b2EHDG+AAAAAAAAAAAAAKE8mHecPW/LxDwL2Ki+pLS5PcVrYr0AAAAAAAAAABPSKz5pjF0+wjoPv9Jmnb5f4o86pECDvgAAAAAAAAAAALhqPhJx1D7aO14/ifozv+90GT/WKe8+AAAAAAAAAABmmLU806e6PhM6Tj30erO+22lzPYWd+jwAAAAAAAAAANMoEr56jro/QkQtvxRaBL4FZla9pOquvgAAAAAAAAAAIKaHPlO1YT9acuM+jLQsv5L28j56tYc+AAAAAAAAAAAauKs99NiWP2W7Qj4jIQC/k0I/Pk74yT0AAAAAAAAAAJoTt7x9mAs8wqXUvJ55hL4tnSY8ZoCaOwAAAAAAAAAAM6eEPfGdwz5lQfa94fOqvv3Xwb1irAK9AAAAAAAAAAAABJ49OAhLP1LrKjt0Dty+ygbYPS3qWDwAAAAAAAAAAM0iUrxcx3e6wggvtO+Yqa8v3Ss7pBaLMwAAgD8AAIA/mhmyOo+cJD3p+hy+eW99vpAIgL0TA8E7AAAAAAAAAACmsfW9y0QcPzoVEj59/q2+B8AzvLbh7TwAAAAAAAAAAGYs0rxU6JQ+rmqvPdE7s77MRIs9tQYVvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVBAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCZGIwdsBSMAWyUTQcBjAF0lEdAnuz9hqj8DXV9lChoBkdAcx0B0ZFXrGgHTQkBaAhHQJ7trgk1Muh1fZQoaAZHQHBKc0cfeUJoB0vwaAhHQJ7ty48U21l1fZQoaAZHQHD3p8KG+K1oB0vxaAhHQJ7t7rqt5lh1fZQoaAZHQHIWyJj2BatoB0vsaAhHQJ7uDvoePq91fZQoaAZHQHGWD7qIJqtoB0vVaAhHQJ7uORyOrAB1fZQoaAZHQHJCK11GLDRoB0v3aAhHQJ7vH0f5k9V1fZQoaAZHQG7o86vJRwZoB0v3aAhHQJ7vMxM36yl1fZQoaAZHQHM3itA9mpVoB00GAWgIR0Ce8TCqIacadX2UKGgGR0Byhetp22XtaAdNEQFoCEdAnvFmS6lLvnV9lChoBkdAcUObgCOmzmgHTRgBaAhHQJ7xibWmP5p1fZQoaAZHQHHghRQ79ydoB0voaAhHQJ7x6qNp/PR1fZQoaAZHQHLlbHAAQxxoB0v9aAhHQJ7yU2CNCJJ1fZQoaAZHQHJA7433pOhoB0v1aAhHQJ7yqVC5Vfh1fZQoaAZHQHFyJ8jRlYloB00NAWgIR0Ce8xf2bobGdX2UKGgGR0BxlputOmBOaAdNDgFoCEdAnvMt/BnBcnV9lChoBkdAcn6oJAt4A2gHTQEBaAhHQJ7zUm9g4Ot1fZQoaAZHQHKVhxLkCFNoB0vvaAhHQJ7zlqoIfKZ1fZQoaAZHQHAcjmbLEDRoB0vsaAhHQJ7zy77Kq4p1fZQoaAZHQG97fDDTBqNoB0v3aAhHQJ7z6iTMaCN1fZQoaAZHQHHyES26TW5oB0vvaAhHQJ70LfUF0Pp1fZQoaAZHQHOM0r5IpYtoB00IAWgIR0Ce9I4PwuuidX2UKGgGR0ByyN2nsLOSaAdL6mgIR0Ce9QQAuIykdX2UKGgGR0ByKiAxzq8laAdL+WgIR0Ce9UcdHUc5dX2UKGgGR0Bxq9V+7UXpaAdNAQFoCEdAnvfFbmlqJ3V9lChoBkdAcVFLeyiVSmgHS+9oCEdAnvgNIsiB5HV9lChoBkdAcFqeqJdjXmgHTQEBaAhHQJ74JLuhK151fZQoaAZHQE4rCAtnPE9oB0uSaAhHQJ75B1A7gbZ1fZQoaAZHQHIqrQHAymBoB0v3aAhHQJ75IGt6ol51fZQoaAZHQHC7H8jzI3loB00SAWgIR0Ce+ZBppN9IdX2UKGgGR0BzBwsXizcAaAdL+2gIR0Ce+b7ZnL7odX2UKGgGR0BypHjHXEqEaAdL6WgIR0Ce+fjKPn0TdX2UKGgGR0Bx52g7HQyAaAdL/GgIR0Ce+gFBY3efdX2UKGgGR0Bt3bo0Q9RraAdL/WgIR0Ce+kZeAuqWdX2UKGgGR0ByYy4MF2V3aAdL8WgIR0Ce+o4bS7XhdX2UKGgGR0By4E/t6X0HaAdNHAFoCEdAnvqbcTJyQ3V9lChoBkdAcnvfqX4TK2gHTQYBaAhHQJ76wGOdXkp1fZQoaAZHQHKX8WsRxtJoB0vyaAhHQJ767qzJIUd1fZQoaAZHQHEgN8eCCjFoB0vpaAhHQJ8M4vQF9rp1fZQoaAZHQG1z/RVp9JBoB0vuaAhHQJ8PV5prULF1fZQoaAZHQG7ngsK9f1JoB00LAWgIR0CfEKIT4+KTdX2UKGgGR0Bx1XLDAJswaAdL8WgIR0CfEP23azu4dX2UKGgGR0ByjPIdU83daAdNFQFoCEdAnxETXOGCZnV9lChoBkdAb/XlA/s3Q2gHS9hoCEdAnxEgSJ0nxHV9lChoBkdAbGtBBzFMqWgHS/toCEdAnxE1gtvn83V9lChoBkdAcPtjMmnfmGgHS+loCEdAnxGpx//ecnV9lChoBkdAcg6U8V58jWgHTQIBaAhHQJ8R6ejEehh1fZQoaAZHQHEa/KQq7RRoB00LAWgIR0CfEk67NB4VdX2UKGgGR0BzC31wo9cKaAdL9GgIR0CfEqbpeNT+dX2UKGgGR0BzUPsrupjuaAdNCAFoCEdAnxLMTN+so3V9lChoBkdAcZxS39aUzWgHS/RoCEdAnxMRsEaESXV9lChoBkdAcWM74BV+7WgHS91oCEdAnxMVspG4JHV9lChoBkdAcj1508vEj2gHS/5oCEdAnxMaM3qA0HV9lChoBkdAcghy1/lQuWgHTRYBaAhHQJ8TaeBg/kh1fZQoaAZHQHBVLfUF0PpoB0v5aAhHQJ8W4z+FUQ11fZQoaAZHQHI8LvLHMlloB0vgaAhHQJ8XcAsCkoF1fZQoaAZHQHFj5+c6Nl1oB0vdaAhHQJ8YEIv8IiV1fZQoaAZHQG6+Ygq3EydoB0voaAhHQJ8YWNHYpUh1fZQoaAZHQHFFXFLnLaFoB0vuaAhHQJ8YqJFb3XZ1fZQoaAZHQG7kKJMxoIxoB0v6aAhHQJ8Y9Ni6QNl1fZQoaAZHQHORLY5DJEJoB0v6aAhHQJ8ZzFLnLaF1fZQoaAZHQHL8EGNaQmxoB00AAWgIR0CfGv/7BO58dX2UKGgGR0BzvkN5MURGaAdL7GgIR0CfG3SDRMN+dX2UKGgGR0Bw+LQOWjXWaAdNHwFoCEdAnxuqD9OymnV9lChoBkdAcquhePaL42gHS/VoCEdAnxu9W6shgXV9lChoBkdAbhEmNR3u/mgHS+doCEdAnxvWSlnAZnV9lChoBkdAcMhZpSJj2GgHTQoBaAhHQJ8chMXaakR1fZQoaAZHQHOXCGJvYOFoB00bAWgIR0CfHJCjUNKAdX2UKGgGR0BxaWiVSn+AaAdNGgFoCEdAnxy3KwIMSnV9lChoBkdAcHNUeuFHrmgHS+RoCEdAnx+9E1EVnHV9lChoBkdAWegXizcAR2gHTegDaAhHQJ8hUQRPGhp1fZQoaAZHQHH1wte2NNtoB0v8aAhHQJ8haJ/G2kV1fZQoaAZHQHBm8IqslsxoB0v9aAhHQJ8iXhtLteF1fZQoaAZHQHBmbgwXZXdoB0v4aAhHQJ8icWdmQKd1fZQoaAZHQHG1mgWac7RoB0v6aAhHQJ8is4XGff51fZQoaAZHQHLd9Nzr/sFoB00gAWgIR0CfIxqzJIUbdX2UKGgGR0BS4kSAYpDvaAdLxWgIR0CfIyLfUF0QdX2UKGgGR0ByBtQm/nGLaAdL/2gIR0CfI15lvqC6dX2UKGgGR0Buie8dxQzlaAdL9GgIR0CfJDxHXmNjdX2UKGgGR0BuGVNtZV4paAdNCAFoCEdAnyRWbb1yvXV9lChoBkdAcS+CqZML4WgHS/poCEdAnyT6tHQQc3V9lChoBkdAceYKzAvcrWgHTREBaAhHQJ8lDM0P6Kt1fZQoaAZHQHLwf+wTufFoB0v6aAhHQJ8lF4A0bcZ1fZQoaAZHQHG7w3YL9dhoB00eAWgIR0CfJSfnOjZddX2UKGgGR0Bwx/WYnfEXaAdNAwFoCEdAnyU05hjOLXV9lChoBkdAcALbyH2ys2gHTQIBaAhHQJ8nMbp/wy91fZQoaAZHQHEB1Q/HHWBoB0vXaAhHQJ8ntGZuyeJ1fZQoaAZHQHERRL9MsYloB0v4aAhHQJ8n4jgQ6IZ1fZQoaAZHQHDlHwCr92poB0v5aAhHQJ8n+Jhvze51fZQoaAZHQHJALAckt29oB0v5aAhHQJ8o7yI55qx1fZQoaAZHQHKWirDIikhoB0vpaAhHQJ8o8FGG21F1fZQoaAZHQHBVYDoyKvVoB00SAWgIR0CfKVRkmQbNdX2UKGgGR0BzRlOzposaaAdL7WgIR0CfKWgCwKSgdX2UKGgGR0BwnM53kgfVaAdL+mgIR0CfKXoA4n4PdX2UKGgGR0BT8TAzpHI7aAdLwmgIR0CfKghVlwtKdX2UKGgGR0BxIY4yXUpeaAdL6WgIR0CfKxEEkjX4dX2UKGgGR0BvwmVC5VfeaAdNFwFoCEdAnytD0lJHy3V9lChoBkdAcVYn9Nvfj2gHS/loCEdAnytGIj4YanV9lChoBkdAcL5wvg3tKWgHTQMBaAhHQJ8rmZlWfbt1fZQoaAZHQHB4OxnnMdNoB00sAWgIR0CfK9X18LKFdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 360, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |