SriSougandhika commited on
Commit
fd5bad1
·
verified ·
1 Parent(s): a134554

uploading the lunar agent to safely land on moon

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 271.52 +/- 17.86
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7bcb246abf40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bcb246b4040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bcb246b40d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bcb246b4160>", "_build": "<function ActorCriticPolicy._build at 0x7bcb246b41f0>", "forward": "<function ActorCriticPolicy.forward at 0x7bcb246b4280>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bcb246b4310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bcb246b43a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7bcb246b4430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bcb246b44c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bcb246b4550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bcb246b45e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bcb2464e000>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1715778673463340014, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0jrLygY7k/e9txvgpNoD1SgsM8hoJYPQAAAAAAAAAAmsQnvZDXqz+keI+9UbrKvmsw2b2EHDG+AAAAAAAAAAAAAKE8mHecPW/LxDwL2Ki+pLS5PcVrYr0AAAAAAAAAABPSKz5pjF0+wjoPv9Jmnb5f4o86pECDvgAAAAAAAAAAALhqPhJx1D7aO14/ifozv+90GT/WKe8+AAAAAAAAAABmmLU806e6PhM6Tj30erO+22lzPYWd+jwAAAAAAAAAANMoEr56jro/QkQtvxRaBL4FZla9pOquvgAAAAAAAAAAIKaHPlO1YT9acuM+jLQsv5L28j56tYc+AAAAAAAAAAAauKs99NiWP2W7Qj4jIQC/k0I/Pk74yT0AAAAAAAAAAJoTt7x9mAs8wqXUvJ55hL4tnSY8ZoCaOwAAAAAAAAAAM6eEPfGdwz5lQfa94fOqvv3Xwb1irAK9AAAAAAAAAAAABJ49OAhLP1LrKjt0Dty+ygbYPS3qWDwAAAAAAAAAAM0iUrxcx3e6wggvtO+Yqa8v3Ss7pBaLMwAAgD8AAIA/mhmyOo+cJD3p+hy+eW99vpAIgL0TA8E7AAAAAAAAAACmsfW9y0QcPzoVEj59/q2+B8AzvLbh7TwAAAAAAAAAAGYs0rxU6JQ+rmqvPdE7s77MRIs9tQYVvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVBAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCZGIwdsBSMAWyUTQcBjAF0lEdAnuz9hqj8DXV9lChoBkdAcx0B0ZFXrGgHTQkBaAhHQJ7trgk1Muh1fZQoaAZHQHBKc0cfeUJoB0vwaAhHQJ7ty48U21l1fZQoaAZHQHD3p8KG+K1oB0vxaAhHQJ7t7rqt5lh1fZQoaAZHQHIWyJj2BatoB0vsaAhHQJ7uDvoePq91fZQoaAZHQHGWD7qIJqtoB0vVaAhHQJ7uORyOrAB1fZQoaAZHQHJCK11GLDRoB0v3aAhHQJ7vH0f5k9V1fZQoaAZHQG7o86vJRwZoB0v3aAhHQJ7vMxM36yl1fZQoaAZHQHM3itA9mpVoB00GAWgIR0Ce8TCqIacadX2UKGgGR0Byhetp22XtaAdNEQFoCEdAnvFmS6lLvnV9lChoBkdAcUObgCOmzmgHTRgBaAhHQJ7xibWmP5p1fZQoaAZHQHHghRQ79ydoB0voaAhHQJ7x6qNp/PR1fZQoaAZHQHLlbHAAQxxoB0v9aAhHQJ7yU2CNCJJ1fZQoaAZHQHJA7433pOhoB0v1aAhHQJ7yqVC5Vfh1fZQoaAZHQHFyJ8jRlYloB00NAWgIR0Ce8xf2bobGdX2UKGgGR0BxlputOmBOaAdNDgFoCEdAnvMt/BnBcnV9lChoBkdAcn6oJAt4A2gHTQEBaAhHQJ7zUm9g4Ot1fZQoaAZHQHKVhxLkCFNoB0vvaAhHQJ7zlqoIfKZ1fZQoaAZHQHAcjmbLEDRoB0vsaAhHQJ7zy77Kq4p1fZQoaAZHQG97fDDTBqNoB0v3aAhHQJ7z6iTMaCN1fZQoaAZHQHHyES26TW5oB0vvaAhHQJ70LfUF0Pp1fZQoaAZHQHOM0r5IpYtoB00IAWgIR0Ce9I4PwuuidX2UKGgGR0ByyN2nsLOSaAdL6mgIR0Ce9QQAuIykdX2UKGgGR0ByKiAxzq8laAdL+WgIR0Ce9UcdHUc5dX2UKGgGR0Bxq9V+7UXpaAdNAQFoCEdAnvfFbmlqJ3V9lChoBkdAcVFLeyiVSmgHS+9oCEdAnvgNIsiB5HV9lChoBkdAcFqeqJdjXmgHTQEBaAhHQJ74JLuhK151fZQoaAZHQE4rCAtnPE9oB0uSaAhHQJ75B1A7gbZ1fZQoaAZHQHIqrQHAymBoB0v3aAhHQJ75IGt6ol51fZQoaAZHQHC7H8jzI3loB00SAWgIR0Ce+ZBppN9IdX2UKGgGR0BzBwsXizcAaAdL+2gIR0Ce+b7ZnL7odX2UKGgGR0BypHjHXEqEaAdL6WgIR0Ce+fjKPn0TdX2UKGgGR0Bx52g7HQyAaAdL/GgIR0Ce+gFBY3efdX2UKGgGR0Bt3bo0Q9RraAdL/WgIR0Ce+kZeAuqWdX2UKGgGR0ByYy4MF2V3aAdL8WgIR0Ce+o4bS7XhdX2UKGgGR0By4E/t6X0HaAdNHAFoCEdAnvqbcTJyQ3V9lChoBkdAcnvfqX4TK2gHTQYBaAhHQJ76wGOdXkp1fZQoaAZHQHKX8WsRxtJoB0vyaAhHQJ767qzJIUd1fZQoaAZHQHEgN8eCCjFoB0vpaAhHQJ8M4vQF9rp1fZQoaAZHQG1z/RVp9JBoB0vuaAhHQJ8PV5prULF1fZQoaAZHQG7ngsK9f1JoB00LAWgIR0CfEKIT4+KTdX2UKGgGR0Bx1XLDAJswaAdL8WgIR0CfEP23azu4dX2UKGgGR0ByjPIdU83daAdNFQFoCEdAnxETXOGCZnV9lChoBkdAb/XlA/s3Q2gHS9hoCEdAnxEgSJ0nxHV9lChoBkdAbGtBBzFMqWgHS/toCEdAnxE1gtvn83V9lChoBkdAcPtjMmnfmGgHS+loCEdAnxGpx//ecnV9lChoBkdAcg6U8V58jWgHTQIBaAhHQJ8R6ejEehh1fZQoaAZHQHEa/KQq7RRoB00LAWgIR0CfEk67NB4VdX2UKGgGR0BzC31wo9cKaAdL9GgIR0CfEqbpeNT+dX2UKGgGR0BzUPsrupjuaAdNCAFoCEdAnxLMTN+so3V9lChoBkdAcZxS39aUzWgHS/RoCEdAnxMRsEaESXV9lChoBkdAcWM74BV+7WgHS91oCEdAnxMVspG4JHV9lChoBkdAcj1508vEj2gHS/5oCEdAnxMaM3qA0HV9lChoBkdAcghy1/lQuWgHTRYBaAhHQJ8TaeBg/kh1fZQoaAZHQHBVLfUF0PpoB0v5aAhHQJ8W4z+FUQ11fZQoaAZHQHI8LvLHMlloB0vgaAhHQJ8XcAsCkoF1fZQoaAZHQHFj5+c6Nl1oB0vdaAhHQJ8YEIv8IiV1fZQoaAZHQG6+Ygq3EydoB0voaAhHQJ8YWNHYpUh1fZQoaAZHQHFFXFLnLaFoB0vuaAhHQJ8YqJFb3XZ1fZQoaAZHQG7kKJMxoIxoB0v6aAhHQJ8Y9Ni6QNl1fZQoaAZHQHORLY5DJEJoB0v6aAhHQJ8ZzFLnLaF1fZQoaAZHQHL8EGNaQmxoB00AAWgIR0CfGv/7BO58dX2UKGgGR0BzvkN5MURGaAdL7GgIR0CfG3SDRMN+dX2UKGgGR0Bw+LQOWjXWaAdNHwFoCEdAnxuqD9OymnV9lChoBkdAcquhePaL42gHS/VoCEdAnxu9W6shgXV9lChoBkdAbhEmNR3u/mgHS+doCEdAnxvWSlnAZnV9lChoBkdAcMhZpSJj2GgHTQoBaAhHQJ8chMXaakR1fZQoaAZHQHOXCGJvYOFoB00bAWgIR0CfHJCjUNKAdX2UKGgGR0BxaWiVSn+AaAdNGgFoCEdAnxy3KwIMSnV9lChoBkdAcHNUeuFHrmgHS+RoCEdAnx+9E1EVnHV9lChoBkdAWegXizcAR2gHTegDaAhHQJ8hUQRPGhp1fZQoaAZHQHH1wte2NNtoB0v8aAhHQJ8haJ/G2kV1fZQoaAZHQHBm8IqslsxoB0v9aAhHQJ8iXhtLteF1fZQoaAZHQHBmbgwXZXdoB0v4aAhHQJ8icWdmQKd1fZQoaAZHQHG1mgWac7RoB0v6aAhHQJ8is4XGff51fZQoaAZHQHLd9Nzr/sFoB00gAWgIR0CfIxqzJIUbdX2UKGgGR0BS4kSAYpDvaAdLxWgIR0CfIyLfUF0QdX2UKGgGR0ByBtQm/nGLaAdL/2gIR0CfI15lvqC6dX2UKGgGR0Buie8dxQzlaAdL9GgIR0CfJDxHXmNjdX2UKGgGR0BuGVNtZV4paAdNCAFoCEdAnyRWbb1yvXV9lChoBkdAcS+CqZML4WgHS/poCEdAnyT6tHQQc3V9lChoBkdAceYKzAvcrWgHTREBaAhHQJ8lDM0P6Kt1fZQoaAZHQHLwf+wTufFoB0v6aAhHQJ8lF4A0bcZ1fZQoaAZHQHG7w3YL9dhoB00eAWgIR0CfJSfnOjZddX2UKGgGR0Bwx/WYnfEXaAdNAwFoCEdAnyU05hjOLXV9lChoBkdAcALbyH2ys2gHTQIBaAhHQJ8nMbp/wy91fZQoaAZHQHEB1Q/HHWBoB0vXaAhHQJ8ntGZuyeJ1fZQoaAZHQHERRL9MsYloB0v4aAhHQJ8n4jgQ6IZ1fZQoaAZHQHDlHwCr92poB0v5aAhHQJ8n+Jhvze51fZQoaAZHQHJALAckt29oB0v5aAhHQJ8o7yI55qx1fZQoaAZHQHKWirDIikhoB0vpaAhHQJ8o8FGG21F1fZQoaAZHQHBVYDoyKvVoB00SAWgIR0CfKVRkmQbNdX2UKGgGR0BzRlOzposaaAdL7WgIR0CfKWgCwKSgdX2UKGgGR0BwnM53kgfVaAdL+mgIR0CfKXoA4n4PdX2UKGgGR0BT8TAzpHI7aAdLwmgIR0CfKghVlwtKdX2UKGgGR0BxIY4yXUpeaAdL6WgIR0CfKxEEkjX4dX2UKGgGR0BvwmVC5VfeaAdNFwFoCEdAnytD0lJHy3V9lChoBkdAcVYn9Nvfj2gHS/loCEdAnytGIj4YanV9lChoBkdAcL5wvg3tKWgHTQMBaAhHQJ8rmZlWfbt1fZQoaAZHQHB4OxnnMdNoB00sAWgIR0CfK9X18LKFdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 360, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2-sri.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:14c2aa744d1ac02f05d134f8aaa9059aabc13de26de1b5eeec8677180868f962
3
+ size 148000
ppo-LunarLander-v2-sri/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2-sri/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7bcb246abf40>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bcb246b4040>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bcb246b40d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bcb246b4160>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7bcb246b41f0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7bcb246b4280>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bcb246b4310>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bcb246b43a0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7bcb246b4430>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bcb246b44c0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bcb246b4550>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bcb246b45e0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7bcb2464e000>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1715778673463340014,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0jrLygY7k/e9txvgpNoD1SgsM8hoJYPQAAAAAAAAAAmsQnvZDXqz+keI+9UbrKvmsw2b2EHDG+AAAAAAAAAAAAAKE8mHecPW/LxDwL2Ki+pLS5PcVrYr0AAAAAAAAAABPSKz5pjF0+wjoPv9Jmnb5f4o86pECDvgAAAAAAAAAAALhqPhJx1D7aO14/ifozv+90GT/WKe8+AAAAAAAAAABmmLU806e6PhM6Tj30erO+22lzPYWd+jwAAAAAAAAAANMoEr56jro/QkQtvxRaBL4FZla9pOquvgAAAAAAAAAAIKaHPlO1YT9acuM+jLQsv5L28j56tYc+AAAAAAAAAAAauKs99NiWP2W7Qj4jIQC/k0I/Pk74yT0AAAAAAAAAAJoTt7x9mAs8wqXUvJ55hL4tnSY8ZoCaOwAAAAAAAAAAM6eEPfGdwz5lQfa94fOqvv3Xwb1irAK9AAAAAAAAAAAABJ49OAhLP1LrKjt0Dty+ygbYPS3qWDwAAAAAAAAAAM0iUrxcx3e6wggvtO+Yqa8v3Ss7pBaLMwAAgD8AAIA/mhmyOo+cJD3p+hy+eW99vpAIgL0TA8E7AAAAAAAAAACmsfW9y0QcPzoVEj59/q2+B8AzvLbh7TwAAAAAAAAAAGYs0rxU6JQ+rmqvPdE7s77MRIs9tQYVvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVBAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCZGIwdsBSMAWyUTQcBjAF0lEdAnuz9hqj8DXV9lChoBkdAcx0B0ZFXrGgHTQkBaAhHQJ7trgk1Muh1fZQoaAZHQHBKc0cfeUJoB0vwaAhHQJ7ty48U21l1fZQoaAZHQHD3p8KG+K1oB0vxaAhHQJ7t7rqt5lh1fZQoaAZHQHIWyJj2BatoB0vsaAhHQJ7uDvoePq91fZQoaAZHQHGWD7qIJqtoB0vVaAhHQJ7uORyOrAB1fZQoaAZHQHJCK11GLDRoB0v3aAhHQJ7vH0f5k9V1fZQoaAZHQG7o86vJRwZoB0v3aAhHQJ7vMxM36yl1fZQoaAZHQHM3itA9mpVoB00GAWgIR0Ce8TCqIacadX2UKGgGR0Byhetp22XtaAdNEQFoCEdAnvFmS6lLvnV9lChoBkdAcUObgCOmzmgHTRgBaAhHQJ7xibWmP5p1fZQoaAZHQHHghRQ79ydoB0voaAhHQJ7x6qNp/PR1fZQoaAZHQHLlbHAAQxxoB0v9aAhHQJ7yU2CNCJJ1fZQoaAZHQHJA7433pOhoB0v1aAhHQJ7yqVC5Vfh1fZQoaAZHQHFyJ8jRlYloB00NAWgIR0Ce8xf2bobGdX2UKGgGR0BxlputOmBOaAdNDgFoCEdAnvMt/BnBcnV9lChoBkdAcn6oJAt4A2gHTQEBaAhHQJ7zUm9g4Ot1fZQoaAZHQHKVhxLkCFNoB0vvaAhHQJ7zlqoIfKZ1fZQoaAZHQHAcjmbLEDRoB0vsaAhHQJ7zy77Kq4p1fZQoaAZHQG97fDDTBqNoB0v3aAhHQJ7z6iTMaCN1fZQoaAZHQHHyES26TW5oB0vvaAhHQJ70LfUF0Pp1fZQoaAZHQHOM0r5IpYtoB00IAWgIR0Ce9I4PwuuidX2UKGgGR0ByyN2nsLOSaAdL6mgIR0Ce9QQAuIykdX2UKGgGR0ByKiAxzq8laAdL+WgIR0Ce9UcdHUc5dX2UKGgGR0Bxq9V+7UXpaAdNAQFoCEdAnvfFbmlqJ3V9lChoBkdAcVFLeyiVSmgHS+9oCEdAnvgNIsiB5HV9lChoBkdAcFqeqJdjXmgHTQEBaAhHQJ74JLuhK151fZQoaAZHQE4rCAtnPE9oB0uSaAhHQJ75B1A7gbZ1fZQoaAZHQHIqrQHAymBoB0v3aAhHQJ75IGt6ol51fZQoaAZHQHC7H8jzI3loB00SAWgIR0Ce+ZBppN9IdX2UKGgGR0BzBwsXizcAaAdL+2gIR0Ce+b7ZnL7odX2UKGgGR0BypHjHXEqEaAdL6WgIR0Ce+fjKPn0TdX2UKGgGR0Bx52g7HQyAaAdL/GgIR0Ce+gFBY3efdX2UKGgGR0Bt3bo0Q9RraAdL/WgIR0Ce+kZeAuqWdX2UKGgGR0ByYy4MF2V3aAdL8WgIR0Ce+o4bS7XhdX2UKGgGR0By4E/t6X0HaAdNHAFoCEdAnvqbcTJyQ3V9lChoBkdAcnvfqX4TK2gHTQYBaAhHQJ76wGOdXkp1fZQoaAZHQHKX8WsRxtJoB0vyaAhHQJ767qzJIUd1fZQoaAZHQHEgN8eCCjFoB0vpaAhHQJ8M4vQF9rp1fZQoaAZHQG1z/RVp9JBoB0vuaAhHQJ8PV5prULF1fZQoaAZHQG7ngsK9f1JoB00LAWgIR0CfEKIT4+KTdX2UKGgGR0Bx1XLDAJswaAdL8WgIR0CfEP23azu4dX2UKGgGR0ByjPIdU83daAdNFQFoCEdAnxETXOGCZnV9lChoBkdAb/XlA/s3Q2gHS9hoCEdAnxEgSJ0nxHV9lChoBkdAbGtBBzFMqWgHS/toCEdAnxE1gtvn83V9lChoBkdAcPtjMmnfmGgHS+loCEdAnxGpx//ecnV9lChoBkdAcg6U8V58jWgHTQIBaAhHQJ8R6ejEehh1fZQoaAZHQHEa/KQq7RRoB00LAWgIR0CfEk67NB4VdX2UKGgGR0BzC31wo9cKaAdL9GgIR0CfEqbpeNT+dX2UKGgGR0BzUPsrupjuaAdNCAFoCEdAnxLMTN+so3V9lChoBkdAcZxS39aUzWgHS/RoCEdAnxMRsEaESXV9lChoBkdAcWM74BV+7WgHS91oCEdAnxMVspG4JHV9lChoBkdAcj1508vEj2gHS/5oCEdAnxMaM3qA0HV9lChoBkdAcghy1/lQuWgHTRYBaAhHQJ8TaeBg/kh1fZQoaAZHQHBVLfUF0PpoB0v5aAhHQJ8W4z+FUQ11fZQoaAZHQHI8LvLHMlloB0vgaAhHQJ8XcAsCkoF1fZQoaAZHQHFj5+c6Nl1oB0vdaAhHQJ8YEIv8IiV1fZQoaAZHQG6+Ygq3EydoB0voaAhHQJ8YWNHYpUh1fZQoaAZHQHFFXFLnLaFoB0vuaAhHQJ8YqJFb3XZ1fZQoaAZHQG7kKJMxoIxoB0v6aAhHQJ8Y9Ni6QNl1fZQoaAZHQHORLY5DJEJoB0v6aAhHQJ8ZzFLnLaF1fZQoaAZHQHL8EGNaQmxoB00AAWgIR0CfGv/7BO58dX2UKGgGR0BzvkN5MURGaAdL7GgIR0CfG3SDRMN+dX2UKGgGR0Bw+LQOWjXWaAdNHwFoCEdAnxuqD9OymnV9lChoBkdAcquhePaL42gHS/VoCEdAnxu9W6shgXV9lChoBkdAbhEmNR3u/mgHS+doCEdAnxvWSlnAZnV9lChoBkdAcMhZpSJj2GgHTQoBaAhHQJ8chMXaakR1fZQoaAZHQHOXCGJvYOFoB00bAWgIR0CfHJCjUNKAdX2UKGgGR0BxaWiVSn+AaAdNGgFoCEdAnxy3KwIMSnV9lChoBkdAcHNUeuFHrmgHS+RoCEdAnx+9E1EVnHV9lChoBkdAWegXizcAR2gHTegDaAhHQJ8hUQRPGhp1fZQoaAZHQHH1wte2NNtoB0v8aAhHQJ8haJ/G2kV1fZQoaAZHQHBm8IqslsxoB0v9aAhHQJ8iXhtLteF1fZQoaAZHQHBmbgwXZXdoB0v4aAhHQJ8icWdmQKd1fZQoaAZHQHG1mgWac7RoB0v6aAhHQJ8is4XGff51fZQoaAZHQHLd9Nzr/sFoB00gAWgIR0CfIxqzJIUbdX2UKGgGR0BS4kSAYpDvaAdLxWgIR0CfIyLfUF0QdX2UKGgGR0ByBtQm/nGLaAdL/2gIR0CfI15lvqC6dX2UKGgGR0Buie8dxQzlaAdL9GgIR0CfJDxHXmNjdX2UKGgGR0BuGVNtZV4paAdNCAFoCEdAnyRWbb1yvXV9lChoBkdAcS+CqZML4WgHS/poCEdAnyT6tHQQc3V9lChoBkdAceYKzAvcrWgHTREBaAhHQJ8lDM0P6Kt1fZQoaAZHQHLwf+wTufFoB0v6aAhHQJ8lF4A0bcZ1fZQoaAZHQHG7w3YL9dhoB00eAWgIR0CfJSfnOjZddX2UKGgGR0Bwx/WYnfEXaAdNAwFoCEdAnyU05hjOLXV9lChoBkdAcALbyH2ys2gHTQIBaAhHQJ8nMbp/wy91fZQoaAZHQHEB1Q/HHWBoB0vXaAhHQJ8ntGZuyeJ1fZQoaAZHQHERRL9MsYloB0v4aAhHQJ8n4jgQ6IZ1fZQoaAZHQHDlHwCr92poB0v5aAhHQJ8n+Jhvze51fZQoaAZHQHJALAckt29oB0v5aAhHQJ8o7yI55qx1fZQoaAZHQHKWirDIikhoB0vpaAhHQJ8o8FGG21F1fZQoaAZHQHBVYDoyKvVoB00SAWgIR0CfKVRkmQbNdX2UKGgGR0BzRlOzposaaAdL7WgIR0CfKWgCwKSgdX2UKGgGR0BwnM53kgfVaAdL+mgIR0CfKXoA4n4PdX2UKGgGR0BT8TAzpHI7aAdLwmgIR0CfKghVlwtKdX2UKGgGR0BxIY4yXUpeaAdL6WgIR0CfKxEEkjX4dX2UKGgGR0BvwmVC5VfeaAdNFwFoCEdAnytD0lJHy3V9lChoBkdAcVYn9Nvfj2gHS/loCEdAnytGIj4YanV9lChoBkdAcL5wvg3tKWgHTQMBaAhHQJ8rmZlWfbt1fZQoaAZHQHB4OxnnMdNoB00sAWgIR0CfK9X18LKFdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 360,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2-sri/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfe6ba8d3e206cef74e36bfde3a1caea91d1924b1fb197d6e00e8dbb68df7737
3
+ size 88362
ppo-LunarLander-v2-sri/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6862a9dc3724da94bd486a556b39f92139dbd49ef160bb9bed4e4d829ebae4b
3
+ size 43762
ppo-LunarLander-v2-sri/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2-sri/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.2.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (175 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 271.5216169, "std_reward": 17.857933563625192, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-05-15T13:39:25.169170"}