segformer-finetuned-rwymarkings-3k-steps

This model is a fine-tuned version of nvidia/mit-b0 on the Spatiallysaying/rwymarkings dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0182
  • Mean Iou: 0.0441
  • Mean Accuracy: 0.0510
  • Overall Accuracy: 0.0800
  • Accuracy Backgound : nan
  • Accuracy Tdz: 0.0908
  • Accuracy Aim: 0.2203
  • Accuracy Desig: 0.0
  • Accuracy Rwythr: 0.0971
  • Accuracy Thrbar: 0.0
  • Accuracy Disp: 0.0
  • Accuracy Chevron: 0.0
  • Accuracy Arrow: 0.0
  • Iou Backgound : 0.0
  • Iou Tdz: 0.0818
  • Iou Aim: 0.2189
  • Iou Desig: 0.0
  • Iou Rwythr: 0.0958
  • Iou Thrbar: 0.0
  • Iou Disp: 0.0
  • Iou Chevron: 0.0
  • Iou Arrow: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 1337
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: polynomial
  • training_steps: 3000

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Backgound Accuracy Tdz Accuracy Aim Accuracy Desig Accuracy Rwythr Accuracy Thrbar Accuracy Disp Accuracy Chevron Accuracy Arrow Iou Backgound Iou Tdz Iou Aim Iou Desig Iou Rwythr Iou Thrbar Iou Disp Iou Chevron Iou Arrow
1.6294 1.0 173 0.5448 0.0 0.0 0.0 nan 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.3371 2.0 346 0.1107 0.0 0.0 0.0 nan 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0724 3.0 519 0.0483 0.0 0.0 0.0 nan 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0508 4.0 692 0.0331 0.0 0.0 0.0 nan 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0369 5.0 865 0.0289 0.0002 0.0002 0.0004 nan 0.0 0.0019 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0019 0.0 0.0 0.0 0.0 0.0 0.0
0.0272 6.0 1038 0.0276 0.0106 0.0120 0.0195 nan 0.0107 0.0853 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0105 0.0845 0.0 0.0 0.0 0.0 0.0 0.0
0.0258 7.0 1211 0.0233 0.0066 0.0075 0.0122 nan 0.0118 0.0480 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0117 0.0480 0.0 0.0 0.0 0.0 0.0 0.0
0.0235 8.0 1384 0.0221 0.0150 0.0171 0.0277 nan 0.0233 0.1108 0.0 0.0024 0.0 0.0 0.0 0.0 0.0 0.0224 0.1107 0.0 0.0024 0.0 0.0 0.0 0.0
0.0213 9.0 1557 0.0209 0.0177 0.0200 0.0326 nan 0.0237 0.1351 0.0 0.0016 0.0 0.0 0.0 0.0 0.0 0.0231 0.1346 0.0 0.0016 0.0 0.0 0.0 0.0
0.0201 10.0 1730 0.0206 0.0277 0.0318 0.0512 nan 0.0595 0.1734 0.0 0.0211 0.0 0.0 0.0 0.0 0.0 0.0559 0.1726 0.0 0.0211 0.0 0.0 0.0 0.0
0.0203 11.0 1903 0.0198 0.0246 0.0281 0.0450 nan 0.0463 0.1512 0.0 0.0277 0.0 0.0 0.0 0.0 0.0 0.0432 0.1505 0.0 0.0277 0.0 0.0 0.0 0.0
0.0172 12.0 2076 0.0192 0.0377 0.0435 0.0690 nan 0.0744 0.2145 0.0 0.0592 0.0 0.0 0.0 0.0 0.0 0.0680 0.2119 0.0 0.0589 0.0 0.0 0.0 0.0
0.0168 13.0 2249 0.0189 0.0331 0.0381 0.0607 nan 0.0704 0.1884 0.0 0.0462 0.0 0.0 0.0 0.0 0.0 0.0645 0.1876 0.0 0.0461 0.0 0.0 0.0 0.0
0.0169 14.0 2422 0.0185 0.0383 0.0442 0.0701 nan 0.0786 0.2124 0.0 0.0628 0.0 0.0 0.0 0.0 0.0 0.0716 0.2112 0.0 0.0623 0.0 0.0 0.0 0.0
0.0172 15.0 2595 0.0184 0.0476 0.0551 0.0864 nan 0.0917 0.2463 0.0 0.1028 0.0 0.0 0.0 0.0 0.0 0.0830 0.2443 0.0 0.1013 0.0 0.0 0.0 0.0
0.0159 16.0 2768 0.0182 0.0523 0.0615 0.0964 nan 0.1202 0.2493 0.0 0.1225 0.0 0.0 0.0 0.0 0.0 0.1044 0.2468 0.0 0.1199 0.0 0.0 0.0 0.0
0.0163 17.0 2941 0.0181 0.0492 0.0571 0.0892 nan 0.0987 0.2414 0.0 0.1167 0.0 0.0 0.0 0.0 0.0 0.0885 0.2397 0.0 0.1146 0.0 0.0 0.0 0.0
0.0152 17.3410 3000 0.0182 0.0441 0.0510 0.0800 nan 0.0908 0.2203 0.0 0.0971 0.0 0.0 0.0 0.0 0.0 0.0818 0.2189 0.0 0.0958 0.0 0.0 0.0 0.0

Framework versions

  • Transformers 4.43.0.dev0
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
22
Safetensors
Model size
3.72M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Spatiallysaying/segformer-finetuned-rwymarkings-3k-steps

Base model

nvidia/mit-b0
Finetuned
(335)
this model