Solshine's picture
Upload README.md with huggingface_hub
508dd25 verified
metadata
base_model: muellerzr/llama-3-8B-self-instruct-LoRA
datasets:
  - muellerzr/llama-3-8b-self-align-data-generation-results
library_name: peft
license: llama3
tags:
  - generated_from_trainer
  - llama-cpp
  - gguf-my-repo
model-index:
  - name: qlora_decrease_lr_promptfix
    results: []

Solshine/llama-3-8B-self-instruct-LoRA-Q4_K_M-GGUF

This model was converted to GGUF format from muellerzr/llama-3-8B-self-instruct-LoRA using llama.cpp via the ggml.ai's GGUF-my-repo space. Refer to the original model card for more details on the model.

Use with llama.cpp

Install llama.cpp through brew (works on Mac and Linux)

brew install llama.cpp

Invoke the llama.cpp server or the CLI.

CLI:

llama-cli --hf-repo Solshine/llama-3-8B-self-instruct-LoRA-Q4_K_M-GGUF --hf-file llama-3-8b-self-instruct-lora-q4_k_m.gguf -p "The meaning to life and the universe is"

Server:

llama-server --hf-repo Solshine/llama-3-8B-self-instruct-LoRA-Q4_K_M-GGUF --hf-file llama-3-8b-self-instruct-lora-q4_k_m.gguf -c 2048

Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.

git clone https://github.com/ggerganov/llama.cpp

Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1 flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).

cd llama.cpp && LLAMA_CURL=1 make

Step 3: Run inference through the main binary.

./llama-cli --hf-repo Solshine/llama-3-8B-self-instruct-LoRA-Q4_K_M-GGUF --hf-file llama-3-8b-self-instruct-lora-q4_k_m.gguf -p "The meaning to life and the universe is"

or

./llama-server --hf-repo Solshine/llama-3-8B-self-instruct-LoRA-Q4_K_M-GGUF --hf-file llama-3-8b-self-instruct-lora-q4_k_m.gguf -c 2048