Solshine's picture
Update README.md
69f867f verified
|
raw
history blame
2.43 kB
metadata
base_model:
  - mlabonne/Hermes-3-Llama-3.1-8B-lorablated
  - Solshine/reflection-llama-3.1-8B
  - Solshine/Meta-Llama-3.1-8B-Instruct-Python-Coder
  - Solshine/reflection-llama-3.1-8B
  - mlabonne/Hermes-3-Llama-3.1-8B-lorablated
tags:
  - merge
  - mergekit
  - lazymergekit
  - mlabonne/Hermes-3-Llama-3.1-8B-lorablated
  - Solshine/reflection-llama-3.1-8B
  - Solshine/Meta-Llama-3.1-8B-Instruct-Python-Coder

Llama-3-1-8B-big-thoughtful-passthrough-merge

Llama-3-1-8B-big-thoughtful-passthrough-merge is a merge of the following models using LazyMergekit:

🧩 Configuration

slices:
- sources:
  - layer_range: [0, 16]
    model: mlabonne/Hermes-3-Llama-3.1-8B-lorablated
- sources:
  - layer_range: [4, 20]
    model: Solshine/reflection-llama-3.1-8B
- sources:
  - layer_range: [8, 24]
    model: Solshine/Meta-Llama-3.1-8B-Instruct-Python-Coder
- sources:
  - layer_range: [12, 28]
    model: Solshine/reflection-llama-3.1-8B
- sources:
  - layer_range: [16, 32]
    model: mlabonne/Hermes-3-Llama-3.1-8B-lorablated
merge_method: passthrough
dtype: float16

💻 Usage

Please set trust remote code to true.

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Solshine/Llama-3-1-8B-big-thoughtful-passthrough-merge"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])