File size: 5,040 Bytes
7239ffa 0bb3100 4af8536 7239ffa 6a40632 7239ffa d23c561 4af8536 b9c1616 d23c561 b9c1616 73d29c8 d23c561 73d29c8 d23c561 b9c1616 6a40632 7239ffa 0bb3100 7239ffa 108b6ea 0bb3100 7239ffa 0bb3100 7239ffa 0bb3100 6a40632 28b719e 6a40632 0bb3100 97375cb 0bb3100 b9c1616 a3b5946 f66ee9b b9c1616 a3b5946 f66ee9b 24f92db f66ee9b 0bb3100 24f92db 0bb3100 b9c1616 b8d956d b9c1616 b8d956d 0bb3100 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
---
library_name: transformers
license: apache-2.0
datasets:
- HuggingFaceTB/smollm-corpus
language:
- en
pipeline_tag: text-generation
tags:
- pt
- doge
---
# **Doge 60M**
<div align="center">
<img src="https://huggingface.co/spaces/SmallDoge/README/resolve/main/org_icon.png" width="100%" alt="SmallDoge" />
</div>
<hr>
<div align="center">
<a href="https://discord.gg/P2yYH95N" target="_blank" style="margin: 2px;">
<img alt="Discord" src="https://img.shields.io/badge/Discord-Small%20Doges-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/>
</a>
<!-- <a href="https://arxiv.org/abs/2412.11834" target="_blank" style="margin: 2px;">
<img alt="arXiv" src="https://img.shields.io/static/v1?label=arXiv&message=2412.11834&color=B31B1B&logo=arXiv" style="display: inline-block; vertical-align: middle;"/>
</a> -->
<a href="https://github.com/SmallDoges/small-doge" target="_blank" style="margin: 2px;">
<img alt="GitHub" src="https://img.shields.io/badge/GitHub-SmallDoge-181717?logo=github" style="display: inline-block; vertical-align: middle;"/>
</a>
<a href="https://github.com/SmallDoges/small-doge/blob/main/LICENSE" style="margin: 2px;">
<img alt="License" src="https://img.shields.io/badge/License-Apache--2.0-blue.svg" style="display: inline-block; vertical-align: middle;"/>
</a>
</div>
Doge uses Dynamic Mask Attention as sequence transformation and can use Multi-Layer Perceptron or Cross Domain Mixture of Experts as state transformation. Dynamic Mask Attention allows the Transformer to use self-attention during training and state space during inference, and Cross Domain Mixture of Experts can directly inherit the weights of Multi-Layer Perceptron for further training. This model is trained by [SmallDoge](https://huggingface.co/SmallDoge) community, for detailed algorithm and model architecture, paper coming soon, all training details and code are available in the [small-doge](https://github.com/SmallDoges/small-doge) repository.
## Uses
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("SmallDoge/Doge-60M")
>>> model = AutoModelForCausalLM.from_pretrained("SmallDoge/Doge-60M", trust_remote_code=True)
>>> inputs = tokenizer("Hey how are you doing?", return_tensors="pt")
>>> out = model.generate(**inputs, max_new_tokens=100)
>>> print(tokenizer.batch_decode(out))
```
## Model Details
We build the Doge by doing Per-Training on [Smollm-Corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus). If you want to continue pre-training this model, you can find the unconverged checkpoint [here](https://huggingface.co/SmallDoge/Doge-60M-checkpoint). These models has not been fine-tuned for instruction, the instruction model is [here](https://huggingface.co/SmallDoge/Doge-60M-Instruct).
**Pre-Training**:
| Model | Training Data | Steps | Content Length | Tokens | LR | Batch Size | Precision | RTX 4090 GPU hours |
|---|---|---|---|---|---|---|---|---|
| [Doge-20M](https://huggingface.co/SmallDoge/Doge-20M) | [smollm-corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus) | 8k | 2048 | 4B | 8e-3 | 0.5M | bfloat16 | 14 |
| [Doge-60M](https://huggingface.co/SmallDoge/Doge-60M) | [smollm-corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus) | 16k | 2048 | 16B | 6e-3 | 1M | bfloat16 | 128 |
| [Doge-160M](https://huggingface.co/SmallDoge/Doge-160M) | [smollm-corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus) | 24k | 2048 | 32B | 4e-3 | 1.5M | bfloat16 | 522 |
| [Doge-320M](https://huggingface.co/SmallDoge/Doge-320M) | [smollm-corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus) | 32k | 2048 | 64B | 2e-3 | 2M | bfloat16 | 1856 |
**Evaluation**:
| Model | MMLU | TriviaQA | ARC | PIQA | HellaSwag | OBQA | Winogrande | tokens / s on i7-11 CPU |
|---|---|---|---|---|---|---|---|---|
| [Doge-20M](https://huggingface.co/SmallDoge/Doge-20M) | 25.4 | 0.03 | 29.8 | 58.4 | 27.3 | 25.6 | 50.2 | 142 |
| [Doge-60M](https://huggingface.co/SmallDoge/Doge-60M) | 26.4 | 0.2 | 37.9 | 61.4 | 31.5 | 28.0 | 50.8 | 62 |
| [Doge-160M](https://huggingface.co/SmallDoge/Doge-160M) | 29.2 | 4.8 | 44.4 | 70.1 | 43.4 | 34.4 | 52.2 | 28 |
| [Doge-320M](https://huggingface.co/SmallDoge/Doge-320M) | 35.6 | 9.4 | 55.4 | 73.9 | 52.7 | 37.9 | 59.3 | 16 |
**Procedure**:
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/loser_cheems/huggingface/runs/ydynuvfz)
**Environment**:
- Image: nvcr.io/nvidia/pytorch:24.12-py3
- Hardware: 1x NVIDIA RTX 4090
- Software: Transformers
## Citation
```bibtex
@misc{smalldoges,
title={SmallDoges: A Family of Dynamic UltraFast Small Language Models},
author={Jingze, Shi and Yifan, Wu and Bingheng, Wu and Yuyu, Luo},
year={2025},
month={March},
url={https://github.com/SmallDoges/small-doge}
}
``` |