Text Generation
Transformers
Safetensors
English
doge
conversational
custom_code
JingzeShi commited on
Commit
d23c561
·
verified ·
1 Parent(s): 108b6ea

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +20 -5
README.md CHANGED
@@ -11,11 +11,26 @@ pipeline_tag: text-generation
11
 
12
  # **Doge 60M**
13
 
14
- ![architecture](Doge.png)
15
-
16
- Doge is an ongoing research project where we aim to train a series of small language models to further explore whether the Transformer framework allows for more complex feedforward network structures, enabling the model to have fewer cache states and larger knowledge capacity.
17
-
18
- In addition, Doge uses Dynamic Mask Attention as sequence transformation and can use Multi-Layer Perceptron or Cross Domain Mixture of Experts as state transformation. Dynamic Mask Attention allows the Transformer to use self-attention during training and state space during inference, and Cross Domain Mixture of Experts can directly inherit the weights of Multi-Layer Perceptron for further training. This model is trained by Jingze Shi, it only allows text input and text generation, for detailed algorithm and model architecture, please refer to [Wonderful Matrices](https://arxiv.org/abs/2412.11834), all training details are in [here](https://github.com/LoserCheems/WonderfulMatrices).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
 
21
  ## Uses
 
11
 
12
  # **Doge 60M**
13
 
14
+ <div align="center">
15
+ <img src="https://huggingface.co/spaces/SmallDoge/README/resolve/main/org_icon.png" width="100%" alt="SmallDoge" />
16
+ </div>
17
+ <hr>
18
+ <div align="center">
19
+ <a href="https://arxiv.org/abs/2412.11834" target="_blank" style="margin: 2px;">
20
+ <img alt="arXiv" src="https://img.shields.io/static/v1?label=arXiv&message=2412.11834&color=B31B1B&logo=arXiv" style="display: inline-block; vertical-align: middle;"/>
21
+ </a>
22
+ <a href="https://github.com/SamllDoge/small-doge" target="_blank" style="margin: 2px;">
23
+ <img alt="GitHub" src="https://img.shields.io/badge/GitHub-SmallDoge-181717?logo=github" style="display: inline-block; vertical-align: middle;"/>
24
+ </a>
25
+ <a href="https://huggingface.co/SmallDoge" target="_blank" style="margin: 2px;">
26
+ <img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-SmallDoge-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
27
+ </a>
28
+ <a href="https://github.com/SamllDoge/small-doge/blob/main/LICENSE" style="margin: 2px;">
29
+ <img alt="License" src="https://img.shields.io/badge/License-Apache--2.0-blue.svg" style="display: inline-block; vertical-align: middle;"/>
30
+ </a>
31
+ </div>
32
+
33
+ Doge uses Dynamic Mask Attention as sequence transformation and can use Multi-Layer Perceptron or Cross Domain Mixture of Experts as state transformation. Dynamic Mask Attention allows the Transformer to use self-attention during training and state space during inference, and Cross Domain Mixture of Experts can directly inherit the weights of Multi-Layer Perceptron for further training. This model is trained by [SmallDoge](https://huggingface.co/SmallDoge) community, for detailed algorithm and model architecture, please refer to [Wonderful Matrices](https://arxiv.org/abs/2412.11834), all training details and code are publicly available on the [small-doge](https://github.com/SamllDoge/small-doge) repository.
34
 
35
 
36
  ## Uses