File size: 30,052 Bytes
977f1b4 1ffdc4a aae4726 1ffdc4a aae4726 1ffdc4a 977f1b4 c0998c1 1ffdc4a babad62 94daf11 977f1b4 dcd3aa9 977f1b4 94daf11 977f1b4 1ffdc4a dcd3aa9 14542ca dcd3aa9 8b48d4d dcd3aa9 1ffdc4a dcd3aa9 94daf11 dcd3aa9 9d0230e c0998c1 dcd3aa9 1ffdc4a 0d51758 dcd3aa9 94daf11 1ffdc4a 94daf11 dcd3aa9 977f1b4 c0998c1 8b48d4d c0998c1 76ee08d c0998c1 14542ca c0998c1 14542ca 9d0230e 14542ca 94daf11 977f1b4 14542ca 977f1b4 14542ca 9d0230e 14542ca babad62 14542ca 94daf11 c0998c1 977f1b4 1ffdc4a 241e973 1ffdc4a 94daf11 bef6092 e3b8726 c0998c1 8aa41b5 e3b8726 76ee08d 14542ca 9d0230e 76ee08d 94daf11 14542ca 8aa41b5 aae4726 2efaa03 aae4726 9d0230e 14542ca 76ee08d 9d0230e 76ee08d 8b48d4d 76ee08d 8b48d4d 76ee08d 8b48d4d 76ee08d 8aa41b5 76ee08d 94daf11 8b48d4d 94daf11 8b48d4d 76ee08d 8b48d4d 76ee08d 8b48d4d 76ee08d 8b48d4d 76ee08d 32ea5b8 94daf11 977f1b4 1ffdc4a 977f1b4 8b48d4d 9d0230e 8b48d4d 977f1b4 1ffdc4a 977f1b4 c0998c1 977f1b4 2efaa03 977f1b4 2efaa03 94daf11 2efaa03 977f1b4 2efaa03 1ffdc4a 2efaa03 977f1b4 2efaa03 977f1b4 1ffdc4a 977f1b4 c0998c1 977f1b4 1ffdc4a 977f1b4 1ffdc4a 977f1b4 aae4726 977f1b4 1ffdc4a 977f1b4 1ffdc4a 977f1b4 1ffdc4a 977f1b4 1ffdc4a 977f1b4 1ffdc4a 977f1b4 92e41f6 aae4726 cdd5e5a 92e41f6 0188a66 92e41f6 9d0230e 0188a66 92e41f6 0188a66 92e41f6 0188a66 92e41f6 0188a66 92e41f6 0188a66 94daf11 0188a66 92e41f6 94daf11 92e41f6 94daf11 aae4726 94daf11 9d0230e 94daf11 aae4726 92e41f6 aae4726 92e41f6 aae4726 92e41f6 aae4726 94daf11 aae4726 94daf11 aae4726 94daf11 9d0230e 94daf11 aae4726 977f1b4 c0998c1 aae4726 9d0230e 94daf11 aae4726 977f1b4 1ffdc4a aae4726 977f1b4 1ffdc4a aae4726 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 |
# Description: This file contains the handcrafted solution for the task of wireframe reconstruction
import io
from collections import defaultdict
from typing import Tuple, List
import cv2
import hoho
import numpy as np
import scipy.interpolate as si
from PIL import Image as PImage
from hoho.color_mappings import gestalt_color_mapping
from hoho.read_write_colmap import read_cameras_binary, read_images_binary, read_points3D_binary
from scipy.spatial import KDTree
from scipy.spatial.distance import cdist
from sklearn.cluster import DBSCAN
from scipy.spatial import cKDTree
from enum import Enum
apex_color = gestalt_color_mapping["apex"]
eave_end_point = gestalt_color_mapping["eave_end_point"]
flashing_end_point = gestalt_color_mapping["flashing_end_point"]
apex_color, eave_end_point, flashing_end_point = [np.array(i) for i in [apex_color, eave_end_point, flashing_end_point]]
unclassified = np.array([(215, 62, 138)])
line_classes = ['eave', 'ridge', 'rake', 'valley']
class VertexType(Enum):
APEX = 0
EAVE_END_POINT = 1
class NearestNDInterpolatorWithThreshold(si.NearestNDInterpolator):
def __init__(self, points, values, max_distance):
super().__init__(points, values)
self.max_distance = max_distance
self.tree = cKDTree(points)
def __call__(self, *args):
# Convert the input to a 2D array of query points
query_points = np.array(args).T
distances, indices = self.tree.query(query_points)
values = np.full(query_points.shape[:-1], np.nan)
valid_mask = distances <= self.max_distance
values[valid_mask] = self.values[indices[valid_mask]]
return values.T
def empty_solution():
'''Return a minimal valid solution, i.e. 2 vertices and 1 edge.'''
return np.zeros((2, 3)), [(0, 1)]
def convert_entry_to_human_readable(entry):
out = {}
already_good = {'__key__', 'wf_vertices', 'wf_edges', 'edge_semantics', 'mesh_vertices', 'mesh_faces',
'face_semantics', 'K', 'R', 't'}
for k, v in entry.items():
if k in already_good:
out[k] = v
continue
match k:
case 'points3d':
out[k] = read_points3D_binary(fid=io.BytesIO(v))
case 'cameras':
out[k] = read_cameras_binary(fid=io.BytesIO(v))
case 'images':
out[k] = read_images_binary(fid=io.BytesIO(v))
case 'ade20k' | 'gestalt':
out[k] = [PImage.open(io.BytesIO(x)).convert('RGB') for x in v]
case 'depthcm':
out[k] = [PImage.open(io.BytesIO(x)) for x in entry['depthcm']]
return out
def remove_undesired_objects(image):
image = image.astype('uint8')
nb_components, output, stats, centroids = cv2.connectedComponentsWithStats(image, connectivity=4)
sizes = stats[:, -1]
max_label = 1
max_size = sizes[1]
for i in range(2, nb_components):
if sizes[i] > max_size:
max_label = i
max_size = sizes[i]
img2 = np.zeros(output.shape)
img2[output == max_label] = 1
return img2
def clean_image(image_gestalt) -> np.ndarray:
# clears image in from of unclassified and disconected components
image_gestalt = np.array(image_gestalt)
# unclassified_mask = cv2.inRange(image_gestalt, unclassified - 1, unclassified + 1)
# unclassified_mask = cv2.bitwise_not(unclassified_mask)
# mask = remove_undesired_objects(unclassified_mask).astype(np.uint8)
# mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, np.ones((11, 11), np.uint8), iterations=11)
# mask = cv2.morphologyEx(mask, cv2.MORPH_DILATE, np.ones((11, 11), np.uint8), iterations=2)
# image_gestalt[:, :, 0] *= mask
# image_gestalt[:, :, 1] *= mask
# image_gestalt[:, :, 2] *= mask
return image_gestalt
def get_vertices(image_gestalt, *, color_range=3.5, dialations=2, erosions=1, kernel_size=11):
### detects the apex and eave end and flashing end points
apex_mask = cv2.inRange(image_gestalt, apex_color - color_range, apex_color + color_range)
eave_end_point_mask = cv2.inRange(image_gestalt, eave_end_point - color_range, eave_end_point + color_range)
flashing_end_point_mask = cv2.inRange(image_gestalt, flashing_end_point - color_range,
flashing_end_point + color_range)
eave_end_point_mask = cv2.bitwise_or(eave_end_point_mask, flashing_end_point_mask)
kernel = np.ones((kernel_size, kernel_size), np.uint8)
apex_mask = cv2.morphologyEx(apex_mask, cv2.MORPH_DILATE, kernel, iterations=dialations)
apex_mask = cv2.morphologyEx(apex_mask, cv2.MORPH_ERODE, kernel, iterations=erosions)
eave_end_point_mask = cv2.morphologyEx(eave_end_point_mask, cv2.MORPH_DILATE, kernel, iterations=dialations)
eave_end_point_mask = cv2.morphologyEx(eave_end_point_mask, cv2.MORPH_ERODE, kernel, iterations=erosions)
*_, apex_stats, apex_centroids = cv2.connectedComponentsWithStats(apex_mask, connectivity=4, stats=cv2.CV_32S)
*_, other_stats, other_centroids = cv2.connectedComponentsWithStats(eave_end_point_mask, connectivity=4, stats=cv2.CV_32S)
return apex_centroids[1:], other_centroids[1:], apex_mask, eave_end_point_mask, apex_stats[1:, cv2.CC_STAT_WIDTH]/2, other_stats[1:, cv2.CC_STAT_WIDTH]/2
def infer_vertices(image_gestalt, *, color_range=4.):
ridge_color = np.array(gestalt_color_mapping["ridge"])
rake_color = np.array(gestalt_color_mapping["rake"])
ridge_mask = cv2.inRange(image_gestalt,
ridge_color - color_range,
ridge_color + color_range)
ridge_mask = cv2.morphologyEx(ridge_mask,
cv2.MORPH_DILATE, np.ones((3, 3)), iterations=4)
rake_mask = cv2.inRange(image_gestalt,
rake_color - color_range,
rake_color + color_range)
rake_mask = cv2.morphologyEx(rake_mask,
cv2.MORPH_DILATE, np.ones((3, 3)), iterations=4)
intersection_mask = cv2.bitwise_and(ridge_mask, rake_mask)
intersection_mask = cv2.morphologyEx(intersection_mask, cv2.MORPH_DILATE, np.ones((11, 11)), iterations=3)
*_, inferred_centroids = cv2.connectedComponentsWithStats(intersection_mask, connectivity=4, stats=cv2.CV_32S)
return inferred_centroids[1:], intersection_mask
def get_missed_vertices(vertices, inferred_centroids, *, min_missing_distance=200.0, **kwargs):
vertices = KDTree(vertices)
closest = vertices.query(inferred_centroids, k=1, distance_upper_bound=min_missing_distance)
missed_points = inferred_centroids[closest[1] == len(vertices.data)]
return missed_points
def get_lines_and_directions(gest_seg_np, edge_class, *, color_range=4., rho, theta, threshold, min_line_length,
max_line_gap, extend, **kwargs):
edge_color = np.array(gestalt_color_mapping[edge_class])
mask = cv2.inRange(gest_seg_np,
edge_color - color_range,
edge_color + color_range)
mask = cv2.morphologyEx(mask,
cv2.MORPH_DILATE, np.ones((3, 3)), iterations=1)
if not np.any(mask):
return [], []
# Run Hough on edge detected image
# Output "lines" is an array containing endpoints of detected line segments
# cv2.GaussianBlur(mask, (11, 11), 0, mask)
lines = cv2.HoughLinesP(mask, rho, theta, threshold, np.array([]),
min_line_length, max_line_gap)
if lines is None:
return [], []
line_directions = []
edges = []
for line_idx, line in enumerate(lines):
for x1, y1, x2, y2 in line:
if x1 < x2:
x1, y1, x2, y2 = x2, y2, x1, y1
direction = (np.array([x2 - x1, y2 - y1]))
direction = direction / np.linalg.norm(direction)
line_directions.append(direction)
direction = extend * direction
x1, y1 = -direction + (x1, y1)
x2, y2 = + direction + (x2, y2)
edges.append((x1, y1, x2, y2))
return edges, line_directions
def infer_missing_vertices(ridge_edges, rake_edges):
ridge_edges = np.array(ridge_edges)
rake_edges = np.array(rake_edges)
ridge_ends = np.concatenate([ridge_edges[:, 2:], ridge_edges[:, :2]])
rake_ends = np.concatenate([rake_edges[:, 2:], rake_edges[:, :2]])
ridge_ends = KDTree(ridge_ends)
rake_ends = KDTree(rake_ends)
missing_candidates = rake_ends.query_ball_tree(ridge_ends, 10)
missing_candidates = np.concatenate([*missing_candidates])
missing_candidates = np.unique(missing_candidates).astype(np.int32)
return ridge_ends.data[missing_candidates]
def get_vertices_and_edges_from_segmentation(gest_seg_np, *,
point_radius=30,
max_angle=5.,
point_radius_scale=1,
**kwargs):
'''Get the vertices and edges from the gestalt segmentation mask of the house'''
# Apex
connections = []
deviation_threshold = np.cos(np.deg2rad(max_angle))
(apex_centroids, eave_end_point_centroids,
apex_mask, eave_end_point_mask,
apex_radii, eave_radii) = get_vertices(gest_seg_np)
vertices = np.concatenate([apex_centroids, eave_end_point_centroids])
# inferred_vertices, inferred_mask = infer_vertices(gest_seg_np)
# missed_vertices = get_missed_vertices(vertices, inferred_vertices, **kwargs)
# vertices = np.concatenate([vertices, missed_vertices])
edges = []
line_directions = []
rho = 1 # distance resolution in pixels of the Hough grid
theta = np.pi / 180 # angular resolution in radians of the Hough grid
threshold = 20 # minimum number of votes (intersections in Hough grid cell)
min_line_length = 60 # minimum number of pixels making up a line
max_line_gap = 40 # maximum gap in pixels between connectable line segments
ridge_edges, ridge_directions = get_lines_and_directions(gest_seg_np, "ridge",
rho=rho,
theta=theta,
threshold=threshold,
min_line_length=min_line_length,
max_line_gap=max_line_gap,
**kwargs)
rake_edges, rake_directions = get_lines_and_directions(gest_seg_np, "rake",
rho=rho,
theta=theta,
threshold=threshold,
min_line_length=min_line_length,
max_line_gap=max_line_gap,
**kwargs)
if len(ridge_edges) > 0:
edges.append(ridge_edges)
line_directions.append(ridge_directions)
if len(rake_edges) > 0:
edges.append(rake_edges)
line_directions.append(rake_directions)
missed_vertices = []
if len(ridge_edges) > 0 and len(rake_edges) > 0:
inferred_vertices = infer_missing_vertices(ridge_edges, rake_edges)
missed_vertices = get_missed_vertices(vertices, inferred_vertices, **kwargs)
vertices = np.concatenate([vertices, missed_vertices])
if len(vertices) < 2:
return [], []
vertex_size = np.full(len(vertices), point_radius/2)
apex_radii *= point_radius_scale
eave_radii *= point_radius_scale
apex_radii = np.clip(apex_radii, 10, point_radius)
eave_radii = np.clip(eave_radii, 10, point_radius)
vertex_size[:len(apex_radii)] = apex_radii
vertex_size[len(apex_radii):len(apex_radii) + len(eave_radii)] = eave_radii
# for i, coords in enumerate(vertices):
# coords = np.round(coords).astype(np.uint32)
# radius = point_radius # np.clip(int(max_depth//2 + depth_np[coords[1], coords[0]]), 10, 30)#int(np.clip(max_depth - depth_np[coords[1], coords[0]], 10, 20))
# vertex_size[i] = scale * radius
vertices = KDTree(vertices)
for edge_class in ['eave',
'step_flashing',
'flashing',
# 'post',
'valley',
'hip',
'transition_line',
'fascia',
'soffit',]:
class_edges, class_directions = get_lines_and_directions(gest_seg_np, edge_class,
rho=rho,
theta=theta,
threshold=threshold,
min_line_length=min_line_length,
max_line_gap=max_line_gap,
**kwargs)
if len(class_edges) > 0:
edges.append(class_edges)
line_directions.append(class_directions)
edges = np.concatenate(edges).astype(np.float64)
if len(edges) < 1:
return [], []
line_directions = np.concatenate(line_directions).astype(np.float64)
# calculate the distances between the vertices and the edge ends
begin_edges = KDTree(edges[:, :2])
end_edges = KDTree(edges[:, 2:])
begin_indices = begin_edges.query_ball_tree(vertices, point_radius)
end_indices = end_edges.query_ball_tree(vertices, point_radius)
line_indices = np.where(np.array([len(i) and len(j) for i, j in zip(begin_indices, end_indices)]))[0]
# create all possible connections between begin and end candidates that correspond to a line
begin_vertex_list = []
end_vertex_list = []
line_idx_list = []
for line_idx in line_indices:
begin_vertices, end_vertices = begin_indices[line_idx], end_indices[line_idx]
begin_vertices, end_vertices = np.array(begin_vertices), np.array(end_vertices)
begin_value = begin_edges.data[line_idx]
end_value = end_edges.data[line_idx]
begin_in_range_indices = np.where(
np.linalg.norm(vertices.data[begin_vertices] - begin_value, axis=1)
<
vertex_size[begin_vertices])[0]
end_in_range_indices = np.where(
np.linalg.norm(vertices.data[end_vertices] - end_value, axis=1)
<
vertex_size[end_vertices])[0]
begin_vertices = begin_vertices[begin_in_range_indices]
end_vertices = end_vertices[end_in_range_indices]
if len(begin_vertices) < 1 or len(end_vertices) < 1:
continue
begin_vertices, end_vertices = np.meshgrid(begin_vertices, end_vertices)
begin_vertex_list.extend(begin_vertices.flatten())
end_vertex_list.extend(end_vertices.flatten())
line_idx_list.extend([line_idx] * len(begin_vertices.flatten()))
line_idx_list = np.array(line_idx_list)
all_connections = np.array([begin_vertex_list, end_vertex_list])
# decrease the number of possible connections to reduce number of calculations
possible_connections = np.unique(all_connections, axis=1)
possible_connections = np.sort(possible_connections, axis=0)
possible_connections = np.unique(possible_connections, axis=1)
possible_connections = possible_connections[:, possible_connections[0, :] != possible_connections[1, :]]
if possible_connections.shape[1] < 1:
return [], []
# precalculate the possible direction vectors
possible_direction_vectors = vertices.data[possible_connections[0]] - vertices.data[possible_connections[1]]
possible_direction_vectors = possible_direction_vectors / np.linalg.norm(possible_direction_vectors, axis=1)[:,
np.newaxis]
owned_lines_per_possible_connections = [list() for i in range(possible_connections.shape[1])]
# assign lines to possible connections
for line_idx, i, j in zip(line_idx_list, begin_vertex_list, end_vertex_list):
if i == j:
continue
i, j = min(i, j), max(i, j)
for connection_idx, connection in enumerate(possible_connections.T):
if np.all((i, j) == connection):
owned_lines_per_possible_connections[connection_idx].append(line_idx)
break
# check if the lines are in the same direction as the possible connection
for fitted_line_idx, owned_lines_per_possible_connection in enumerate(owned_lines_per_possible_connections):
line_deviations = np.abs(
np.dot(line_directions[owned_lines_per_possible_connection], possible_direction_vectors[fitted_line_idx]))
if np.any(line_deviations > deviation_threshold):
connections.append(possible_connections[:, fitted_line_idx])
vertices = [{"xy": v, "type": VertexType.APEX} for v in apex_centroids]
vertices += [{"xy": v, "type": VertexType.APEX} for v in missed_vertices]
vertices += [{"xy": v, "type": VertexType.EAVE_END_POINT} for v in eave_end_point_centroids]
return vertices, connections
def get_uv_depth(vertices, depth):
'''Get the depth of the vertices from the depth image'''
depth[depth > 3000] = np.nan
uv = np.array([v['xy'] for v in vertices])
uv_int = uv.astype(np.int32)
H, W = depth.shape[:2]
uv_int[:, 0] = np.clip(uv_int[:, 0], 0, W - 1)
uv_int[:, 1] = np.clip(uv_int[:, 1], 0, H - 1)
vertex_depth = depth[(uv_int[:, 1], uv_int[:, 0])]
return uv, vertex_depth
def merge_vertices_3d(vert_edge_per_image, merge_th=0.1, **kwargs):
'''Merge vertices that are close to each other in 3D space and are of same types'''
all_3d_vertices = []
connections_3d = []
cur_start = 0
types = []
for cimg_idx, (vertices, connections, vertices_3d) in vert_edge_per_image.items():
# remove nan values and remap the connections
connections = [[a, b]
for (a, b) in connections
if
not np.any(np.isnan(vertices_3d[a]))
and
not np.any(np.isnan(vertices_3d[b]))
]
left_vertex_indices = np.where(np.all(~np.isnan(vertices_3d), axis=1))[0]
new_indices = np.arange(len(left_vertex_indices))
new_vertex_mapping = dict(zip(left_vertex_indices, new_indices))
vertices = [v for i, v in enumerate(vertices) if i in new_vertex_mapping]
types += [int(v['type'] == VertexType.APEX) for v in vertices]
vertices_3d = vertices_3d[left_vertex_indices]
connections = [[new_vertex_mapping[a] + cur_start, new_vertex_mapping[b] + cur_start] for a, b in connections]
all_3d_vertices.append(vertices_3d)
connections_3d += connections
cur_start += len(vertices_3d)
all_3d_vertices = np.concatenate(all_3d_vertices, axis=0)
distmat = cdist(all_3d_vertices, all_3d_vertices)
types = np.array(types).reshape(-1, 1)
same_types = cdist(types, types)
mask_to_merge = (distmat <= merge_th) & (same_types == 0)
new_vertices = []
new_connections = []
to_merge = sorted(list(set([tuple(a.nonzero()[0].tolist()) for a in mask_to_merge])))
to_merge_final = defaultdict(list)
for i in range(len(all_3d_vertices)):
for j in to_merge:
if i in j:
to_merge_final[i] += j
for k, v in to_merge_final.items():
to_merge_final[k] = list(set(v))
already_there = set()
merged = []
for k, v in to_merge_final.items():
if k in already_there:
continue
merged.append(v)
for vv in v:
already_there.add(vv)
old_idx_to_new = {}
for count, idxs in enumerate(merged):
new_vertices.append(all_3d_vertices[idxs].mean(axis=0))
for idx in idxs:
old_idx_to_new[idx] = count
new_vertices = np.array(new_vertices)
for conn in connections_3d:
new_con = sorted((old_idx_to_new[conn[0]], old_idx_to_new[conn[1]]))
if new_con[0] == new_con[1]:
continue
if new_con not in new_connections:
new_connections.append(new_con)
return new_vertices, new_connections
def prune_not_connected(all_3d_vertices, connections_3d):
'''Prune vertices that are not connected to any other vertex'''
connected = defaultdict(list)
for c in connections_3d:
connected[c[0]].append(c)
connected[c[1]].append(c)
new_indexes = {}
new_verts = []
connected_out = []
for k, v in connected.items():
vert = all_3d_vertices[k]
if tuple(vert) not in new_verts:
new_verts.append(tuple(vert))
new_indexes[k] = len(new_verts) - 1
for k, v in connected.items():
for vv in v:
connected_out.append((new_indexes[vv[0]], new_indexes[vv[1]]))
connected_out = list(set(connected_out))
return np.array(new_verts), connected_out
def clean_points3d(entry, clustering_eps):
image_dict = {}
for k, v in entry["images"].items():
image_dict[v.name] = v
points = [v.xyz for k, v in entry["points3d"].items()]
points = np.array(points)
point_keys = [k for k, v in entry["points3d"].items()]
point_keys = np.array(point_keys)
clustered = DBSCAN(eps=clustering_eps, min_samples=5).fit(points).labels_
clustered_indices = np.argsort(clustered)
points = points[clustered_indices]
point_keys = point_keys[clustered_indices]
clustered = clustered[clustered_indices]
_, cluster_indices = np.unique(clustered, return_index=True)
clustered_points = np.split(points, cluster_indices[1:])
clustered_keys = np.split(point_keys, cluster_indices[1:])
biggest_cluster_index = np.argmax([len(i) for i in clustered_points])
biggest_cluster = clustered_points[biggest_cluster_index]
biggest_cluster_keys = clustered_keys[biggest_cluster_index]
biggest_cluster_keys = set(biggest_cluster_keys)
points3d_kdtree = KDTree(biggest_cluster)
return points3d_kdtree, biggest_cluster_keys, image_dict
def get_depthmap_from_pointcloud(image, pointcloud, biggest_cluster_keys, R, t):
belonging_points3d = []
belonging_points2d = []
point_indices = np.where(image.point3D_ids != -1)[0]
for idx, point_id in zip(point_indices, image.point3D_ids[point_indices]):
if point_id in biggest_cluster_keys:
belonging_points3d.append(pointcloud[point_id].xyz)
belonging_points2d.append(image.xys[idx])
if len(belonging_points3d) < 1:
print(f'No 3D points in image {image.name}')
raise KeyError
belonging_points3d = np.array(belonging_points3d)
belonging_points2d = np.array(belonging_points2d)
# projected2d, _ = cv2.projectPoints(belonging_points3d, R, t, K, dist_coeff)
important = np.where(np.all(belonging_points2d >= 0, axis=1))
# Normalize the uv to the camera intrinsics
world_to_cam = np.eye(4)
world_to_cam[:3, :3] = R
world_to_cam[:3, 3] = t
homo_belonging_points = cv2.convertPointsToHomogeneous(belonging_points3d)
depth = cv2.convertPointsFromHomogeneous(cv2.transform(homo_belonging_points, world_to_cam))
depth = depth[:, 0, 2]
# projected2d = projected2d[:, 0, :]
depth = depth[important[0]]
# projected2d = projected2d[important[0]]
projected2d = belonging_points2d[important[0]]
return projected2d, depth
def predict(entry, visualize=False,
scale_estimation_coefficient=2.5,
clustering_eps=100,
dist_coeff=0,
pointcloud_depth_coeff = 1,
interpolation_radius=200,
**kwargs) -> Tuple[np.ndarray, List[int]]:
if 'gestalt' not in entry or 'depthcm' not in entry or 'K' not in entry or 'R' not in entry or 't' not in entry:
print('Missing required fields in the entry')
return (entry['__key__'], *empty_solution())
entry = hoho.decode(entry)
vert_edge_per_image = {}
points3d_kdtree, biggest_cluster_keys, image_dict = clean_points3d(entry, clustering_eps)
for i, (gest, depthcm, K, R, t, imagekey) in enumerate(zip(entry['gestalt'],
entry['depthcm'],
entry['K'],
entry['R'],
entry['t'],
entry['__imagekey__']
)):
gest_seg = gest.resize(depthcm.size)
gest_seg_np = np.array(gest_seg).astype(np.uint8)
vertices, connections = get_vertices_and_edges_from_segmentation(gest_seg_np, **kwargs)
if (len(vertices) < 2) or (len(connections) < 1):
print(f'Not enough vertices or connections in image {i}')
vert_edge_per_image[i] = np.empty((0, 2)), [], np.empty((0, 3))
continue
depth_np = np.array(depthcm) / scale_estimation_coefficient
# kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
# depth_np = cv2.filter2D(depth_np, -1, kernel)
uv, depth_vert_from_depth_map = get_uv_depth(vertices, depth_np)
try:
image = image_dict[imagekey]
projected2d, depth = get_depthmap_from_pointcloud(image, entry["points3d"], biggest_cluster_keys, R, t)
if len(depth) < 1:
print(f'No 3D points in image {i}')
# vert_edge_per_image[i] = np.empty((0, 2)), [], np.empty((0, 3))
raise KeyError
depth *= pointcloud_depth_coeff
# interpolator = si.NearestNDInterpolator(projected2d, depth, rescale=True)
interpolator = NearestNDInterpolatorWithThreshold(projected2d, depth, interpolation_radius)
uv = np.array([v['xy'] for v in vertices])
xi, yi = uv[:, 0], uv[:, 1]
depth_vert_from_pointcloud = interpolator(xi, yi)
depthmap_used = False
except KeyError:
#Revert to the depthmap
depthmap_used = True
# Normalize the uv to the camera intrinsics
xy_local = np.ones((len(uv), 3))
xy_local[:, 0] = (uv[:, 0] - K[0, 2]) / K[0, 0]
xy_local[:, 1] = (uv[:, 1] - K[1, 2]) / K[1, 1]
# Get the 3D vertices
depth_vert_nan_idxs = None
if depthmap_used:
depth_vert = depth_vert_from_depth_map
else:
depth_vert_nan_idxs = np.where(np.isnan(depth_vert_from_pointcloud))[0]
depth_vert_from_pointcloud[depth_vert_nan_idxs] = depth_vert_from_depth_map[depth_vert_nan_idxs]
depth_vert = depth_vert_from_pointcloud
norm_factor = np.linalg.norm(xy_local, axis=1)[..., None]
if depth_vert_nan_idxs is not None and len(depth_vert_nan_idxs) > 0:
norm_factor_min = np.min(norm_factor[depth_vert_nan_idxs])
if len(depth_vert_nan_idxs) != len(norm_factor):
norm_factor_max = np.max(norm_factor[~np.isin(np.arange(len(norm_factor)), depth_vert_nan_idxs)])
else:
norm_factor_max = np.max(norm_factor)
else:
norm_factor_min = np.min(norm_factor)
norm_factor_max = np.max(norm_factor)
vertices_3d_local = depth_vert[..., None] * xy_local
if depthmap_used:
vertices_3d_local /= norm_factor_max
else:
vertices_3d_local[depth_vert_nan_idxs] /= norm_factor_max
vertices_3d_local[~np.isin(np.arange(len(vertices_3d_local)), depth_vert_nan_idxs)] /= norm_factor_min
world_to_cam = np.eye(4)
world_to_cam[:3, :3] = R
world_to_cam[:3, 3] = t
cam_to_world = np.linalg.inv(world_to_cam)
vertices_3d = cv2.transform(cv2.convertPointsToHomogeneous(vertices_3d_local), cam_to_world)
vertices_3d = cv2.convertPointsFromHomogeneous(vertices_3d).reshape(-1, 3)
# not_nan_items = np.all(~np.isnan(vertices_3d), axis=1)
# _, closest_fitted = points3d_kdtree.query(vertices_3d[not_nan_items])
# vertices_3d[not_nan_items] = points3d_kdtree.data[closest_fitted]
vert_edge_per_image[i] = vertices, connections, vertices_3d
all_3d_vertices, connections_3d = merge_vertices_3d(vert_edge_per_image, **kwargs)
all_3d_vertices_clean, connections_3d_clean = all_3d_vertices, connections_3d
# all_3d_vertices_clean, connections_3d_clean = prune_not_connected(all_3d_vertices, connections_3d)
# highest_edges = np.argpartition(all_3d_vertices_clean[:, 1], 4)[:4].tolist()
#
# connections_3d_clean.append(highest_edges[:2])
# connections_3d_clean.append(highest_edges[2:])
# all_3d_vertices_clean, connections_3d_clean = prune_not_connected(all_3d_vertices, connections_3d)
if (len(all_3d_vertices_clean) < 2) or len(connections_3d_clean) < 1:
print(f'Not enough vertices or connections in the 3D vertices')
return (entry['__key__'], *empty_solution())
if visualize:
from hoho.viz3d import plot_estimate_and_gt
plot_estimate_and_gt(all_3d_vertices_clean,
connections_3d_clean,
entry['wf_vertices'],
entry['wf_edges'])
return entry['__key__'], all_3d_vertices_clean, connections_3d_clean
|