File size: 18,381 Bytes
977f1b4
 
 
 
 
 
1ffdc4a
 
 
 
977f1b4
c0998c1
1ffdc4a
977f1b4
dcd3aa9
 
 
 
 
 
 
977f1b4
1ffdc4a
977f1b4
 
1ffdc4a
dcd3aa9
 
 
 
8b48d4d
dcd3aa9
 
 
 
 
 
 
 
 
 
 
 
1ffdc4a
dcd3aa9
 
 
 
 
 
 
c0998c1
dcd3aa9
 
 
 
 
 
 
 
c0998c1
dcd3aa9
 
1ffdc4a
 
0d51758
dcd3aa9
 
 
 
 
 
 
 
 
8b48d4d
 
1ffdc4a
 
dcd3aa9
977f1b4
c0998c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b48d4d
c0998c1
 
 
 
76ee08d
c0998c1
 
 
 
 
 
977f1b4
 
8aa41b5
 
977f1b4
 
 
 
8aa41b5
 
 
 
 
 
 
 
 
 
 
977f1b4
 
 
c0998c1
 
977f1b4
 
1ffdc4a
241e973
1ffdc4a
 
bef6092
e3b8726
c0998c1
 
 
8aa41b5
8b48d4d
 
 
 
 
 
 
 
e3b8726
76ee08d
 
 
 
 
 
 
 
 
 
 
 
 
977f1b4
1ffdc4a
 
ad705df
 
8aa41b5
eee8277
e3b8726
8b48d4d
 
8aa41b5
8b48d4d
 
 
 
 
8aa41b5
8b48d4d
 
e3b8726
8b48d4d
 
 
 
 
 
76ee08d
e3b8726
8b48d4d
eee8277
8b48d4d
 
eee8277
8b48d4d
8aa41b5
76ee08d
 
 
 
 
8b48d4d
76ee08d
 
8b48d4d
76ee08d
 
8b48d4d
76ee08d
8aa41b5
76ee08d
 
 
 
 
 
 
 
 
8b48d4d
76ee08d
8b48d4d
76ee08d
 
8b48d4d
76ee08d
 
 
 
 
8b48d4d
76ee08d
 
 
 
 
 
 
8b48d4d
76ee08d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32ea5b8
dcd3aa9
c0998c1
dcd3aa9
977f1b4
 
1ffdc4a
977f1b4
 
8b48d4d
 
977f1b4
 
1ffdc4a
 
 
977f1b4
 
 
c0998c1
977f1b4
 
 
 
 
 
 
1ffdc4a
977f1b4
1ffdc4a
 
977f1b4
1ffdc4a
977f1b4
1ffdc4a
977f1b4
c0998c1
977f1b4
 
 
 
 
 
 
1ffdc4a
977f1b4
 
1ffdc4a
977f1b4
 
 
 
 
 
 
 
1ffdc4a
977f1b4
 
 
 
1ffdc4a
 
 
 
977f1b4
 
 
 
 
 
1ffdc4a
977f1b4
 
1ffdc4a
977f1b4
 
 
 
 
 
 
 
 
1ffdc4a
977f1b4
 
 
1ffdc4a
 
977f1b4
1ffdc4a
 
 
977f1b4
 
 
c0998c1
977f1b4
ad705df
 
 
977f1b4
 
1ffdc4a
 
 
 
 
977f1b4
 
 
8b48d4d
241e973
977f1b4
1ffdc4a
977f1b4
 
 
 
 
1ffdc4a
 
977f1b4
1ffdc4a
977f1b4
 
 
1ffdc4a
977f1b4
 
 
c0998c1
1ffdc4a
977f1b4
1ffdc4a
977f1b4
 
 
1ffdc4a
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
# Description: This file contains the handcrafted solution for the task of wireframe reconstruction 

import io
from collections import defaultdict
from typing import Tuple, List

import cv2
import numpy as np
from PIL import Image as PImage
from hoho.color_mappings import gestalt_color_mapping
from hoho.read_write_colmap import read_cameras_binary, read_images_binary, read_points3D_binary
from scipy.spatial import KDTree
from scipy.spatial.distance import cdist

apex_color = gestalt_color_mapping["apex"]
eave_end_point = gestalt_color_mapping["eave_end_point"]
flashing_end_point = gestalt_color_mapping["flashing_end_point"]

apex_color, eave_end_point, flashing_end_point = [np.array(i) for i in [apex_color, eave_end_point, flashing_end_point]]
unclassified = np.array([(215, 62, 138)])
line_classes = ['eave', 'ridge', 'rake', 'valley']


def empty_solution():
    '''Return a minimal valid solution, i.e. 2 vertices and 1 edge.'''
    return np.zeros((2, 3)), [(0, 1)]


def undesired_objects(image):
    image = image.astype('uint8')
    nb_components, output, stats, centroids = cv2.connectedComponentsWithStats(image, connectivity=4)
    sizes = stats[:, -1]
    max_label = 1
    max_size = sizes[1]
    for i in range(2, nb_components):
        if sizes[i] > max_size:
            max_label = i
            max_size = sizes[i]

    img2 = np.zeros(output.shape)
    img2[output == max_label] = 1
    return img2


def clean_image(image_gestalt) -> np.ndarray:
    # clears image in from of unclassified and disconected components
    image_gestalt = np.array(image_gestalt)
    unclassified_mask = cv2.inRange(image_gestalt, unclassified + 0.0, unclassified + 0.8)
    unclassified_mask = cv2.bitwise_not(unclassified_mask)
    mask = undesired_objects(unclassified_mask).astype(np.uint8)
    mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, np.ones((11, 11), np.uint8), iterations=11)
    mask = cv2.morphologyEx(mask, cv2.MORPH_DILATE, np.ones((11, 11), np.uint8), iterations=2)

    image_gestalt[:, :, 0] *= mask
    image_gestalt[:, :, 1] *= mask
    image_gestalt[:, :, 2] *= mask
    return image_gestalt


def get_vertices(image_gestalt, *, color_range=4., dialations=3, erosions=1, kernel_size=13):
    ### detects the apex and eave end and flashing end points
    apex_mask = cv2.inRange(image_gestalt, apex_color - color_range, apex_color + color_range)
    eave_end_point_mask = cv2.inRange(image_gestalt, eave_end_point - color_range, eave_end_point + color_range)
    flashing_end_point_mask = cv2.inRange(image_gestalt, flashing_end_point - color_range,
                                          flashing_end_point + color_range)
    eave_end_point_mask = cv2.bitwise_or(eave_end_point_mask, flashing_end_point_mask)

    kernel = np.ones((kernel_size, kernel_size), np.uint8)

    apex_mask = cv2.morphologyEx(apex_mask, cv2.MORPH_DILATE, kernel, iterations=dialations)
    apex_mask = cv2.morphologyEx(apex_mask, cv2.MORPH_ERODE, kernel, iterations=erosions)

    eave_end_point_mask = cv2.morphologyEx(eave_end_point_mask, cv2.MORPH_DILATE, kernel, iterations=dialations)
    eave_end_point_mask = cv2.morphologyEx(eave_end_point_mask, cv2.MORPH_ERODE, kernel, iterations=erosions)

    *_, apex_centroids = cv2.connectedComponentsWithStats(apex_mask, connectivity=4, stats=cv2.CV_32S)
    *_, other_centroids = cv2.connectedComponentsWithStats(eave_end_point_mask, connectivity=4, stats=cv2.CV_32S)

    return apex_centroids[1:], other_centroids[1:], apex_mask, eave_end_point_mask


def infer_vertices(image_gestalt, *, color_range=4.):
    ridge_color = np.array(gestalt_color_mapping["ridge"])
    rake_color = np.array(gestalt_color_mapping["rake"])
    ridge_mask = cv2.inRange(image_gestalt,
                             ridge_color - color_range,
                             ridge_color + color_range)
    ridge_mask = cv2.morphologyEx(ridge_mask,
                                  cv2.MORPH_DILATE, np.ones((3, 3)), iterations=4)
    rake_mask = cv2.inRange(image_gestalt,
                            rake_color - color_range,
                            rake_color + color_range)
    rake_mask = cv2.morphologyEx(rake_mask,
                                 cv2.MORPH_DILATE, np.ones((3, 3)), iterations=4)

    intersection_mask = cv2.bitwise_and(ridge_mask, rake_mask)
    intersection_mask = cv2.morphologyEx(intersection_mask, cv2.MORPH_DILATE, np.ones((11, 11)), iterations=3)

    *_, inferred_centroids = cv2.connectedComponentsWithStats(intersection_mask, connectivity=4, stats=cv2.CV_32S)

    return inferred_centroids[1:], intersection_mask


def get_missed_vertices(vertices, inferred_centroids, *, min_missing_distance=200.0, **kwargs):
    vertices = KDTree(vertices)
    closest = vertices.query(inferred_centroids, k=1, distance_upper_bound=min_missing_distance)
    missed_points = inferred_centroids[closest[1] == len(vertices.data)]
    return missed_points


def convert_entry_to_human_readable(entry):
    out = {}
    already_good = {'__key__', 'wf_vertices', 'wf_edges', 'edge_semantics', 'mesh_vertices', 'mesh_faces',
                    'face_semantics', 'K', 'R', 't'}
    for k, v in entry.items():
        if k in already_good:
            out[k] = v
            continue
        match k:
            case 'points3d':
                out[k] = read_points3D_binary(fid=io.BytesIO(v))
            case 'cameras':
                out[k] = read_cameras_binary(fid=io.BytesIO(v))
            case 'images':
                out[k] = read_images_binary(fid=io.BytesIO(v))
            case 'ade20k' | 'gestalt':
                out[k] = [PImage.open(io.BytesIO(x)).convert('RGB') for x in v]
            case 'depthcm':
                out[k] = [PImage.open(io.BytesIO(x)) for x in entry['depthcm']]
    return out


def get_vertices_and_edges_from_segmentation(gest_seg_np, *, color_range=4., point_radius=30, max_angle=5., extend=35,
                                             **kwargs):
    '''Get the vertices and edges from the gestalt segmentation mask of the house'''
    # Apex
    connections = []
    deviation_threshold = np.cos(np.deg2rad(max_angle))

    apex_centroids, eave_end_point_centroids, apex_mask, eave_end_point_mask = get_vertices(gest_seg_np)

    vertices = np.concatenate([apex_centroids, eave_end_point_centroids])
    # inferred_vertices, inferred_mask = infer_vertices(gest_seg_np)
    # missed_vertices = get_missed_vertices(vertices, inferred_vertices, **kwargs)
    # vertices = np.concatenate([vertices, missed_vertices])

    vertices = KDTree(vertices)

    # scale = 1
    # vertex_size = np.zeros(vertices.shape[0])
    # for i, coords in enumerate(vertices):
    #     # coords = np.round(coords).astype(np.uint32)
    #     radius = point_radius  # np.clip(int(max_depth//2 + depth_np[coords[1], coords[0]]), 10, 30)#int(np.clip(max_depth - depth_np[coords[1], coords[0]], 10, 20))
    #     vertex_size[i] = (scale * radius) ** 2  # because we are using squared distances

    if len(vertices.data) < 2:
        return [], []
    edges = []
    line_directions = []

    rho = 1  # distance resolution in pixels of the Hough grid
    theta = np.pi / 180  # angular resolution in radians of the Hough grid
    threshold = 20  # minimum number of votes (intersections in Hough grid cell)
    min_line_length = 60  # minimum number of pixels making up a line
    max_line_gap = 40  # maximum gap in pixels between connectable line segments

    for edge_class in ['eave', 'ridge', 'rake', 'valley', 'flashing', 'step_flashing', 'hip']:

        edge_color = np.array(gestalt_color_mapping[edge_class])

        mask = cv2.inRange(gest_seg_np,
                           edge_color - color_range,
                           edge_color + color_range)
        mask = cv2.morphologyEx(mask,
                                cv2.MORPH_DILATE, np.ones((3, 3)), iterations=1)

        if not np.any(mask):
            continue

        # Run Hough on edge detected image
        # Output "lines" is an array containing endpoints of detected line segments
        cv2.GaussianBlur(mask, (11, 11), 0, mask)
        lines = cv2.HoughLinesP(mask, rho, theta, threshold, np.array([]),
                                min_line_length, max_line_gap)

        if lines is None:
            continue

        for line_idx, line in enumerate(lines):
            for x1, y1, x2, y2 in line:
                if x1 < x2:
                    x1, y1, x2, y2 = x2, y2, x1, y1
                direction = (np.array([x2 - x1, y2 - y1]))
                direction = direction / np.linalg.norm(direction)
                line_directions.append(direction)

                direction = extend * direction

                x1, y1 = (-direction + (x1, y1)).astype(np.int32)
                x2, y2 = (+ direction + (x2, y2)).astype(np.int32)

                edges.append((x1, y1, x2, y2))

    edges = np.array(edges).astype(np.float64)
    line_directions = np.array(line_directions).astype(np.float64)
    if len(edges) < 1:
        return [], []
    # calculate the distances between the vertices and the edge ends

    begin_edges = KDTree(edges[:, :2])
    end_edges = KDTree(edges[:, 2:])

    begin_indices = begin_edges.query_ball_tree(vertices, point_radius)
    end_indices = end_edges.query_ball_tree(vertices, point_radius)

    line_indices = np.where(np.array([len(i) and len(j) for i, j in zip(begin_indices, end_indices)]))[0]

    # create all possible connections between begin and end candidates that correspond to a line
    begin_vertex_list = []
    end_vertex_list = []
    line_idx_list = []
    for line_idx in line_indices:
        begin_vertex, end_vertex = begin_indices[line_idx], end_indices[line_idx]
        begin_vertex, end_vertex = np.meshgrid(begin_vertex, end_vertex)
        begin_vertex_list.extend(begin_vertex.flatten())
        end_vertex_list.extend(end_vertex.flatten())

        line_idx_list.extend([line_idx] * len(begin_vertex.flatten()))

    line_idx_list = np.array(line_idx_list)
    all_connections = np.array([begin_vertex_list, end_vertex_list])

    # decrease the number of possible connections to reduce number of calculations
    possible_connections = np.unique(all_connections, axis=1)
    possible_connections = np.sort(possible_connections, axis=0)
    possible_connections = np.unique(possible_connections, axis=1)
    possible_connections = possible_connections[:, possible_connections[0, :] != possible_connections[1, :]]

    if possible_connections.shape[1] < 1:
        return [], []

    # precalculate the possible direction vectors
    possible_direction_vectors = vertices.data[possible_connections[0]] - vertices.data[possible_connections[1]]
    possible_direction_vectors = possible_direction_vectors / np.linalg.norm(possible_direction_vectors, axis=1)[:,
                                                              np.newaxis]

    owned_lines_per_possible_connections = [list() for i in range(possible_connections.shape[1])]

    # assign lines to possible connections
    for line_idx, i, j in zip(line_idx_list, begin_vertex_list, end_vertex_list):
        if i == j:
            continue
        i, j = min(i, j), max(i, j)
        for connection_idx, connection in enumerate(possible_connections.T):
            if np.all((i, j) == connection):
                owned_lines_per_possible_connections[connection_idx].append(line_idx)
                break

    # check if the lines are in the same direction as the possible connection
    for fitted_line_idx, owned_lines_per_possible_connection in enumerate(owned_lines_per_possible_connections):
        line_deviations = np.abs(
            np.dot(line_directions[owned_lines_per_possible_connection], possible_direction_vectors[fitted_line_idx]))
        if np.any(line_deviations > deviation_threshold):
            connections.append(possible_connections[:, fitted_line_idx])

    vertices = [{"xy": v, "type": "apex"} for v in apex_centroids]
    # vertices += [{"xy": v, "type": "apex"} for v in missed_vertices]
    vertices += [{"xy": v, "type": "eave_end_point"} for v in eave_end_point_centroids]
    return vertices, connections


def get_uv_depth(vertices, depth):
    '''Get the depth of the vertices from the depth image'''

    uv = np.array([v['xy'] for v in vertices])
    uv_int = uv.astype(np.int32)
    H, W = depth.shape[:2]
    uv_int[:, 0] = np.clip(uv_int[:, 0], 0, W - 1)
    uv_int[:, 1] = np.clip(uv_int[:, 1], 0, H - 1)
    vertex_depth = depth[(uv_int[:, 1], uv_int[:, 0])]
    return uv, vertex_depth


def merge_vertices_3d(vert_edge_per_image, merge_th=0.1, **kwargs):
    '''Merge vertices that are close to each other in 3D space and are of same types'''
    all_3d_vertices = []
    connections_3d = []
    all_indexes = []
    cur_start = 0
    types = []
    for cimg_idx, (vertices, connections, vertices_3d) in vert_edge_per_image.items():
        types += [int(v['type'] == 'apex') for v in vertices]
        all_3d_vertices.append(vertices_3d)
        connections_3d += [(x + cur_start, y + cur_start) for (x, y) in connections]
        cur_start += len(vertices_3d)
    all_3d_vertices = np.concatenate(all_3d_vertices, axis=0)
    # print (connections_3d)
    distmat = cdist(all_3d_vertices, all_3d_vertices)
    types = np.array(types).reshape(-1, 1)
    same_types = cdist(types, types)
    mask_to_merge = (distmat <= merge_th) & (same_types == 0)
    new_vertices = []
    new_connections = []
    to_merge = sorted(list(set([tuple(a.nonzero()[0].tolist()) for a in mask_to_merge])))
    to_merge_final = defaultdict(list)
    for i in range(len(all_3d_vertices)):
        for j in to_merge:
            if i in j:
                to_merge_final[i] += j
    for k, v in to_merge_final.items():
        to_merge_final[k] = list(set(v))
    already_there = set()
    merged = []
    for k, v in to_merge_final.items():
        if k in already_there:
            continue
        merged.append(v)
        for vv in v:
            already_there.add(vv)
    old_idx_to_new = {}
    count = 0
    for idxs in merged:
        new_vertices.append(all_3d_vertices[idxs].mean(axis=0))
        for idx in idxs:
            old_idx_to_new[idx] = count
        count += 1
    # print (connections_3d)
    new_vertices = np.array(new_vertices)
    # print (connections_3d)
    for conn in connections_3d:
        new_con = sorted((old_idx_to_new[conn[0]], old_idx_to_new[conn[1]]))
        if new_con[0] == new_con[1]:
            continue
        if new_con not in new_connections:
            new_connections.append(new_con)
    # print (f'{len(new_vertices)} left after merging {len(all_3d_vertices)} with {th=}')
    return new_vertices, new_connections


def prune_not_connected(all_3d_vertices, connections_3d):
    '''Prune vertices that are not connected to any other vertex'''
    connected = defaultdict(list)
    for c in connections_3d:
        connected[c[0]].append(c)
        connected[c[1]].append(c)
    new_indexes = {}
    new_verts = []
    connected_out = []
    for k, v in connected.items():
        vert = all_3d_vertices[k]
        if tuple(vert) not in new_verts:
            new_verts.append(tuple(vert))
            new_indexes[k] = len(new_verts) - 1
    for k, v in connected.items():
        for vv in v:
            connected_out.append((new_indexes[vv[0]], new_indexes[vv[1]]))
    connected_out = list(set(connected_out))

    return np.array(new_verts), connected_out


def predict(entry, visualize=False, scale_estimation_coefficient=2.5, **kwargs) -> Tuple[np.ndarray, List[int]]:
    good_entry = convert_entry_to_human_readable(entry)
    if 'gestalt' not in good_entry or 'depthcm' not in good_entry or 'K' not in good_entry or 'R' not in good_entry or 't' not in good_entry:
        print('Missing required fields in the entry')
        return (good_entry['__key__'], *empty_solution())
    vert_edge_per_image = {}
    for i, (gest, depth, K, R, t) in enumerate(zip(good_entry['gestalt'],
                                                   good_entry['depthcm'],
                                                   good_entry['K'],
                                                   good_entry['R'],
                                                   good_entry['t']
                                                   )):
        gest_seg = gest.resize(depth.size)
        gest_seg_np = np.array(gest_seg).astype(np.uint8)
        # Metric3D
        depth_np = np.array(depth) / scale_estimation_coefficient
        vertices, connections = get_vertices_and_edges_from_segmentation(gest_seg_np, **kwargs)
        if (len(vertices) < 2) or (len(connections) < 1):
            print(f'Not enough vertices or connections in image {i}')
            vert_edge_per_image[i] = np.empty((0, 2)), [], np.empty((0, 3))
            continue
        uv, depth_vert = get_uv_depth(vertices, depth_np)
        # Normalize the uv to the camera intrinsics
        xy_local = np.ones((len(uv), 3))
        xy_local[:, 0] = (uv[:, 0] - K[0, 2]) / K[0, 0]
        xy_local[:, 1] = (uv[:, 1] - K[1, 2]) / K[1, 1]
        # Get the 3D vertices
        vertices_3d_local = depth_vert[..., None] * (xy_local / np.linalg.norm(xy_local, axis=1)[..., None])
        world_to_cam = np.eye(4)
        world_to_cam[:3, :3] = R
        world_to_cam[:3, 3] = t.reshape(-1)
        cam_to_world = np.linalg.inv(world_to_cam)
        vertices_3d = cv2.transform(cv2.convertPointsToHomogeneous(vertices_3d_local), cam_to_world)
        vertices_3d = cv2.convertPointsFromHomogeneous(vertices_3d).reshape(-1, 3)
        vert_edge_per_image[i] = vertices, connections, vertices_3d
    all_3d_vertices, connections_3d = merge_vertices_3d(vert_edge_per_image, **kwargs)
    all_3d_vertices_clean, connections_3d_clean = prune_not_connected(all_3d_vertices, connections_3d)
    if (len(all_3d_vertices_clean) < 2) or len(connections_3d_clean) < 1:
        print(f'Not enough vertices or connections in the 3D vertices')
        return (good_entry['__key__'], *empty_solution())
    if visualize:
        from hoho.viz3d import plot_estimate_and_gt
        plot_estimate_and_gt(all_3d_vertices_clean,
                             connections_3d_clean,
                             good_entry['wf_vertices'],
                             good_entry['wf_edges'])
    return good_entry['__key__'], all_3d_vertices_clean, connections_3d_clean