metadata
license: apache-2.0
base_model: distilbert-base-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: trainer8
results: []
trainer8
This model is a fine-tuned version of distilbert-base-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.6219
- Precision: 0.6754
- Recall: 0.6190
- F1: 0.6211
- Accuracy: 0.6190
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
1.8672 | 0.57 | 30 | 1.7381 | 0.3395 | 0.3810 | 0.2691 | 0.3810 |
1.5788 | 1.13 | 60 | 1.4116 | 0.3983 | 0.5 | 0.4344 | 0.5 |
1.1325 | 1.7 | 90 | 1.1528 | 0.6029 | 0.6071 | 0.5755 | 0.6071 |
0.7556 | 2.26 | 120 | 0.8986 | 0.6796 | 0.6310 | 0.6237 | 0.6310 |
0.458 | 2.83 | 150 | 0.9989 | 0.6815 | 0.6071 | 0.5981 | 0.6071 |
0.2407 | 3.4 | 180 | 1.2074 | 0.6018 | 0.5476 | 0.5200 | 0.5476 |
0.2018 | 3.96 | 210 | 1.0334 | 0.7163 | 0.6786 | 0.6847 | 0.6786 |
0.0545 | 4.53 | 240 | 1.2405 | 0.6544 | 0.5952 | 0.5899 | 0.5952 |
0.0464 | 5.09 | 270 | 1.1513 | 0.7442 | 0.6905 | 0.6869 | 0.6905 |
0.0105 | 5.66 | 300 | 1.5555 | 0.7304 | 0.6429 | 0.6344 | 0.6429 |
0.025 | 6.23 | 330 | 1.3049 | 0.7119 | 0.6310 | 0.6343 | 0.6310 |
0.0045 | 6.79 | 360 | 1.3200 | 0.6754 | 0.6190 | 0.6211 | 0.6190 |
0.0036 | 7.36 | 390 | 1.4460 | 0.6754 | 0.6190 | 0.6211 | 0.6190 |
0.0031 | 7.92 | 420 | 1.4770 | 0.6754 | 0.6190 | 0.6211 | 0.6190 |
0.0028 | 8.49 | 450 | 1.4846 | 0.6754 | 0.6190 | 0.6211 | 0.6190 |
0.0023 | 9.06 | 480 | 1.5149 | 0.6666 | 0.6071 | 0.6086 | 0.6071 |
0.0022 | 9.62 | 510 | 1.5523 | 0.6666 | 0.6071 | 0.6086 | 0.6071 |
0.002 | 10.19 | 540 | 1.5883 | 0.6754 | 0.6190 | 0.6211 | 0.6190 |
0.0019 | 10.75 | 570 | 1.6123 | 0.6754 | 0.6190 | 0.6211 | 0.6190 |
0.0016 | 11.32 | 600 | 1.6183 | 0.6754 | 0.6190 | 0.6211 | 0.6190 |
0.0017 | 11.89 | 630 | 1.6112 | 0.6754 | 0.6190 | 0.6211 | 0.6190 |
0.0016 | 12.45 | 660 | 1.6067 | 0.6754 | 0.6190 | 0.6211 | 0.6190 |
0.0015 | 13.02 | 690 | 1.6122 | 0.6754 | 0.6190 | 0.6211 | 0.6190 |
0.0014 | 13.58 | 720 | 1.6163 | 0.6754 | 0.6190 | 0.6211 | 0.6190 |
0.0014 | 14.15 | 750 | 1.6194 | 0.6754 | 0.6190 | 0.6211 | 0.6190 |
0.0015 | 14.72 | 780 | 1.6215 | 0.6754 | 0.6190 | 0.6211 | 0.6190 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2