trainer8 / README.md
SimoneJLaudani's picture
End of training
9569c78 verified
metadata
license: apache-2.0
base_model: distilbert-base-cased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: trainer8
    results: []

trainer8

This model is a fine-tuned version of distilbert-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6219
  • Precision: 0.6754
  • Recall: 0.6190
  • F1: 0.6211
  • Accuracy: 0.6190

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
1.8672 0.57 30 1.7381 0.3395 0.3810 0.2691 0.3810
1.5788 1.13 60 1.4116 0.3983 0.5 0.4344 0.5
1.1325 1.7 90 1.1528 0.6029 0.6071 0.5755 0.6071
0.7556 2.26 120 0.8986 0.6796 0.6310 0.6237 0.6310
0.458 2.83 150 0.9989 0.6815 0.6071 0.5981 0.6071
0.2407 3.4 180 1.2074 0.6018 0.5476 0.5200 0.5476
0.2018 3.96 210 1.0334 0.7163 0.6786 0.6847 0.6786
0.0545 4.53 240 1.2405 0.6544 0.5952 0.5899 0.5952
0.0464 5.09 270 1.1513 0.7442 0.6905 0.6869 0.6905
0.0105 5.66 300 1.5555 0.7304 0.6429 0.6344 0.6429
0.025 6.23 330 1.3049 0.7119 0.6310 0.6343 0.6310
0.0045 6.79 360 1.3200 0.6754 0.6190 0.6211 0.6190
0.0036 7.36 390 1.4460 0.6754 0.6190 0.6211 0.6190
0.0031 7.92 420 1.4770 0.6754 0.6190 0.6211 0.6190
0.0028 8.49 450 1.4846 0.6754 0.6190 0.6211 0.6190
0.0023 9.06 480 1.5149 0.6666 0.6071 0.6086 0.6071
0.0022 9.62 510 1.5523 0.6666 0.6071 0.6086 0.6071
0.002 10.19 540 1.5883 0.6754 0.6190 0.6211 0.6190
0.0019 10.75 570 1.6123 0.6754 0.6190 0.6211 0.6190
0.0016 11.32 600 1.6183 0.6754 0.6190 0.6211 0.6190
0.0017 11.89 630 1.6112 0.6754 0.6190 0.6211 0.6190
0.0016 12.45 660 1.6067 0.6754 0.6190 0.6211 0.6190
0.0015 13.02 690 1.6122 0.6754 0.6190 0.6211 0.6190
0.0014 13.58 720 1.6163 0.6754 0.6190 0.6211 0.6190
0.0014 14.15 750 1.6194 0.6754 0.6190 0.6211 0.6190
0.0015 14.72 780 1.6215 0.6754 0.6190 0.6211 0.6190

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2