metadata
license: apache-2.0
base_model: distilbert-base-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: test_trainer4
results: []
test_trainer4
This model is a fine-tuned version of distilbert-base-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8004
- Precision: 1.0
- Recall: 1.0
- F1: 1.0
- Accuracy: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
1.1721 | 0.92 | 6 | 0.9430 | 1.0 | 1.0 | 1.0 | 1.0 |
0.9711 | 2.0 | 13 | 0.9201 | 1.0 | 1.0 | 1.0 | 1.0 |
1.1169 | 2.92 | 19 | 0.8874 | 1.0 | 1.0 | 1.0 | 1.0 |
0.9234 | 4.0 | 26 | 0.8359 | 1.0 | 1.0 | 1.0 | 1.0 |
0.9595 | 4.62 | 30 | 0.8004 | 1.0 | 1.0 | 1.0 | 1.0 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2