SiRoZaRuPa's picture
Update README.md
ea37f22 verified
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - wer
base_model: rinna/japanese-hubert-base
model-index:
  - name: hubert-japanese-base-noise-0426
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: None
          args: default
        metrics:
          - type: wer
            value: 0.992
            name: Wer

hubert-japanese-base-noise-0426

This model is a fine-tuned version of rinna/japanese-hubert-base on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2302
  • Cer: 0.0598
  • Wer: 0.992

Model description

This model is a hiragana recognition model created by the proposed method.
The model is based on rinna's hubert base model.

Intended uses & limitations

More information needed

Training and evaluation data

Train : noisepaused_JNAS_train_0408
Test : noisepaused_JNAS_test_0408

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 12500.0
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Cer Wer
11.9556 1.0 2500 9.5354 0.9998 1.0
3.8038 2.0 5000 3.6912 0.9998 1.0
1.668 3.0 7500 1.1310 0.2733 1.0
0.688 4.0 10000 0.4272 0.1880 1.0
0.4959 5.0 12500 0.3254 0.1356 0.998
0.4275 6.0 15000 0.2856 0.1026 1.0
0.3647 7.0 17500 0.2720 0.0884 0.998
0.346 8.0 20000 0.2625 0.0848 0.998
0.3273 9.0 22500 0.2646 0.0896 0.996
0.301 10.0 25000 0.2479 0.0734 0.996
0.2871 11.0 27500 0.2466 0.0778 0.998
0.268 12.0 30000 0.2403 0.0717 0.992
0.2494 13.0 32500 0.2467 0.0705 0.994
0.2336 14.0 35000 0.2411 0.0702 0.994
0.2347 15.0 37500 0.2352 0.0662 0.994
0.2261 16.0 40000 0.2400 0.0708 0.996
0.207 17.0 42500 0.2341 0.0652 0.996
0.2018 18.0 45000 0.2340 0.0635 0.994
0.196 19.0 47500 0.2323 0.0578 0.992
0.1856 20.0 50000 0.2343 0.0625 0.992
0.1788 21.0 52500 0.2303 0.0597 0.992
0.1821 22.0 55000 0.2285 0.0596 0.99
0.1824 23.0 57500 0.2305 0.0591 0.99
0.1693 24.0 60000 0.2297 0.0598 0.99
0.1807 25.0 62500 0.2302 0.0598 0.992

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.2
  • Datasets 2.18.0
  • Tokenizers 0.15.1