metadata
base_model:
- unsloth/llama-2-7b-bnb-4bit
- hermeschen1116/response_generator_for_emotion_chat_bot
library_name: peft
license: apache-2.0
datasets:
- Shotaro30678/rlhf-RG-trl-style-v3
tags:
- trl
- unsloth
language:
- en
pipeline_tag: text-generation
Response Generator for Emotion Chat Bot
Model description
This model is a dpo fine-tuned version of hermeschen1116/response_generator_for_emotion_chat_bot on Shotaro30678/rlhf-RG-trl-style-v3, self modified version of daily_dialog.
Intended uses & limitations
Use dpo trainer to do the RLHF so that the model can be more precise and consistent.
Model performance
Model Comparison
Sentiment Score: Shotaro30678/emotion_text_classifier_on_dd_v1
Metric | DPO Trained Model | SFT Model (Reference) |
---|---|---|
Accuracy | 0.851 | 0.788 |
F1-score | 0.8564 | 0.7975 |
Gibberish Distribution: madhurjindal/autonlp-Gibberish-Detector-492513457
Category | DPO Trained Model | SFT Model (Reference) |
---|---|---|
Clean | 882 | 898 |
Mild Gibberish | 94 | 58 |
Word Salad | 21 | 33 |
Noise | 3 | 11 |
Cut-Off Output:
Output Type | DPO Trained Model | SFT Model (Reference) |
---|---|---|
Complete Output | 985 | 975 |
Incomplete Output | 15 | 25 |
on hermeschen1116/daily_dialog_for_RG test split.
test on config:
generation_config = GenerationConfig(
max_new_tokens=150,
min_new_tokens=5,
repetition_penalty=1.1,
top_k=3,
top_p=0.9,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
temperature=1.0,
do_sample=True,
num_beams=1
)
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- beta=0.1,
- remove_unused_columns=False,
- num_train_epochs=3,
- gradient_checkpointing=True
others remain default
Framework versions
- Bitsandbytes 0.43.1
- Datasets 2.20.0
- PEFT 0.11.1
- Pytorch 2.3.0+cu121
- Transformers 4.42.4
- Tokenizers 0.19.1
- Trl 0.8.6
- unsloth 2024.7 0f2e484
Uploaded model
- Developed by: Shotaro30678
- Finetuned from model : hermeschen1116/response_generator_for_emotion_chat_bot
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
Quick sample
# libs are from github repo
from libs import ResponseGeneratorPipeline
from unsloth import FastLanguageModel
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "Shotaro30678/response_generator_DPO", # YOUR MODEL YOU USED FOR TRAINING
load_in_4bit = True,
)
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
bot = ResponseGeneratorPipeline(
model,
tokenizer,
framework="pt",
task="conversation-generation",
num_workers=16,
torch_dtype="auto",
add_special_tokens=True,
truncation=False,
padding=True
)
conversation = [
{'content': {'dialog': '', 'emotion': ''}, 'role': 'system'},
{'content': {'dialog': 'Can you do push-ups ?', 'emotion': 'neutral'},
'role': 'user'},
{'content': {'dialog': "Of course I can . It's a piece of cake ! Believe it or not , I can do 30 push-ups a minute .",
'emotion': 'neutral'},
'role': 'assistant'},
{'content': {'dialog': "Really ? I think that's impossible !",
'emotion': 'surprise'},
'role': 'user'},
{'content': {'dialog': 'You mean 30 push-ups ?', 'emotion': 'neutral'},
'role': 'assistant'},
{'content': {'dialog': 'Yeah !', 'emotion': 'neutral'}, 'role': 'user'},
{'content': {'dialog': '', 'emotion': 'neutral'}, 'role': 'assistant'}
]
generation_config = GenerationConfig(
max_new_tokens=150,
min_new_tokens=5,
repetition_penalty=1.1,
top_k=3,
top_p=0.9,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
temperature=1.0,
do_sample=True,
num_beams=1
)
print(bot(conversation, generation_config=generation_config)[0]['generated_text'][-1]["content"]["dialog"])
output:
30 push-ups in a row?