File size: 14,910 Bytes
1d170b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 |
---
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:46453
- loss:MultipleNegativesRankingLoss
base_model: sentence-transformers/all-mpnet-base-v2
datasets: []
widget:
- source_sentence: clinician thinks the patient is homeless
sentences:
- '- Ms. ___ was homeless at the time of this admission.'
- This is ___ year old single homeless woman, previously diagnosed with borderline
personality disorder with chronic affective instability, reactive mood, impulsivity,
SIB (ingesting objects while hospitalized), recently discharged from ___ on ___,
___ client, who presented to ___ on a ___ with worsening mood, threats of suicide
via cutting her legs off, as well as thoughts of wanting to hurt _
- Patient reports that her apartment is bugged, she has camera in her television,
and a helicopter is reading minds.
- source_sentence: assigned a case manager for housing
sentences:
- 'Home With Service Facility:'
- We consulted social work, psychiatry, and the case managers, who are working with
the hospital attorneys to acquire safer housing options with greater oversight
from health care professionals. .
- Has not established care with
- source_sentence: has been homeless
sentences:
- He reports being homeless, living in an empty garage near his sister.
- To complicate matters, patient's main support/roommate will be moving out of country
soon, so he will no longer be able to live in his apartment.
- 'Axis IV: homelessness'
- source_sentence: homelessness
sentences:
- Does not identify any acute stressors, but describes no longer being able to tolerate
being homeless (lack of food/clothing/showers).
- Unclear how reliable his group home is administering meds, notably nursing is
quite limited.
- Case management assisted in formulated a plan with ___ that would allow the patient's
___ be the first responder when issues regarding her these two problems arise.
- source_sentence: assisted…housing benefits
sentences:
- As a result, patient is currently homeless.
- 'Home With Service Facility:'
- Patient with multiple admissions in the past several months, homeless.
pipeline_tag: sentence-similarity
---
# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 84f2bcc00d77236f9e89c8a360a00fb1139bf47d -->
- **Maximum Sequence Length:** 384 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Shobhank-iiitdwd/Clinical_sentence_transformers_mpnet_base_v2")
# Run inference
sentences = [
'assisted…housing benefits',
'Home With Service Facility:',
'Patient with multiple admissions in the past several months, homeless.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `num_train_epochs`: 100
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 100
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss |
|:-------:|:-----:|:-------------:|
| 0.6887 | 500 | 3.5133 |
| 1.3774 | 1000 | 3.2727 |
| 2.0661 | 1500 | 3.2238 |
| 2.7548 | 2000 | 3.1758 |
| 3.4435 | 2500 | 3.1582 |
| 4.1322 | 3000 | 3.1385 |
| 4.8209 | 3500 | 3.1155 |
| 5.5096 | 4000 | 3.1034 |
| 6.1983 | 4500 | 3.091 |
| 6.8871 | 5000 | 3.0768 |
| 7.5758 | 5500 | 3.065 |
| 8.2645 | 6000 | 3.0632 |
| 8.9532 | 6500 | 3.0566 |
| 9.6419 | 7000 | 3.0433 |
| 0.6887 | 500 | 3.0536 |
| 1.3774 | 1000 | 3.0608 |
| 2.0661 | 1500 | 3.0631 |
| 2.7548 | 2000 | 3.0644 |
| 3.4435 | 2500 | 3.0667 |
| 4.1322 | 3000 | 3.07 |
| 4.8209 | 3500 | 3.0682 |
| 5.5096 | 4000 | 3.0718 |
| 6.1983 | 4500 | 3.0719 |
| 6.8871 | 5000 | 3.0685 |
| 7.5758 | 5500 | 3.0723 |
| 8.2645 | 6000 | 3.0681 |
| 8.9532 | 6500 | 3.0633 |
| 9.6419 | 7000 | 3.0642 |
| 10.3306 | 7500 | 3.0511 |
| 11.0193 | 8000 | 3.0463 |
| 11.7080 | 8500 | 3.0301 |
| 12.3967 | 9000 | 3.0163 |
| 13.0854 | 9500 | 3.0059 |
| 13.7741 | 10000 | 2.9845 |
| 14.4628 | 10500 | 2.9705 |
| 15.1515 | 11000 | 2.9536 |
| 15.8402 | 11500 | 2.9263 |
| 16.5289 | 12000 | 2.9199 |
| 17.2176 | 12500 | 2.8989 |
| 17.9063 | 13000 | 2.8818 |
| 18.5950 | 13500 | 2.8735 |
| 19.2837 | 14000 | 2.852 |
| 19.9725 | 14500 | 2.8315 |
| 20.6612 | 15000 | 2.8095 |
| 21.3499 | 15500 | 2.7965 |
| 22.0386 | 16000 | 2.7802 |
| 22.7273 | 16500 | 2.7527 |
| 23.4160 | 17000 | 2.7547 |
| 24.1047 | 17500 | 2.7377 |
| 24.7934 | 18000 | 2.7035 |
| 25.4821 | 18500 | 2.7102 |
| 26.1708 | 19000 | 2.6997 |
| 26.8595 | 19500 | 2.6548 |
| 27.5482 | 20000 | 2.6704 |
| 28.2369 | 20500 | 2.6624 |
| 28.9256 | 21000 | 2.6306 |
| 29.6143 | 21500 | 2.6358 |
| 30.3030 | 22000 | 2.634 |
| 30.9917 | 22500 | 2.6089 |
| 31.6804 | 23000 | 2.607 |
| 32.3691 | 23500 | 2.6246 |
| 33.0579 | 24000 | 2.5947 |
| 33.7466 | 24500 | 2.5798 |
| 34.4353 | 25000 | 2.6025 |
| 35.1240 | 25500 | 2.5824 |
| 35.8127 | 26000 | 2.5698 |
| 36.5014 | 26500 | 2.5711 |
| 37.1901 | 27000 | 2.5636 |
| 37.8788 | 27500 | 2.5387 |
| 38.5675 | 28000 | 2.5472 |
| 39.2562 | 28500 | 2.5455 |
| 39.9449 | 29000 | 2.5204 |
| 40.6336 | 29500 | 2.524 |
| 41.3223 | 30000 | 2.5246 |
| 42.0110 | 30500 | 2.5125 |
| 42.6997 | 31000 | 2.5042 |
| 43.3884 | 31500 | 2.5165 |
| 44.0771 | 32000 | 2.5187 |
| 44.7658 | 32500 | 2.4975 |
| 45.4545 | 33000 | 2.5048 |
| 46.1433 | 33500 | 2.521 |
| 46.8320 | 34000 | 2.4825 |
| 47.5207 | 34500 | 2.5034 |
| 48.2094 | 35000 | 2.5049 |
| 48.8981 | 35500 | 2.4886 |
| 49.5868 | 36000 | 2.4992 |
| 50.2755 | 36500 | 2.5099 |
| 50.9642 | 37000 | 2.489 |
| 51.6529 | 37500 | 2.4825 |
| 52.3416 | 38000 | 2.4902 |
| 53.0303 | 38500 | 2.4815 |
| 53.7190 | 39000 | 2.4723 |
| 54.4077 | 39500 | 2.4921 |
| 55.0964 | 40000 | 2.4763 |
| 55.7851 | 40500 | 2.4692 |
| 56.4738 | 41000 | 2.4831 |
| 57.1625 | 41500 | 2.4705 |
| 57.8512 | 42000 | 2.4659 |
| 58.5399 | 42500 | 2.4804 |
| 59.2287 | 43000 | 2.4582 |
| 59.9174 | 43500 | 2.4544 |
| 60.6061 | 44000 | 2.4712 |
| 61.2948 | 44500 | 2.4478 |
| 61.9835 | 45000 | 2.4428 |
| 62.6722 | 45500 | 2.4558 |
| 63.3609 | 46000 | 2.4428 |
| 64.0496 | 46500 | 2.4399 |
| 64.7383 | 47000 | 2.4529 |
| 65.4270 | 47500 | 2.4374 |
| 66.1157 | 48000 | 2.4543 |
| 66.8044 | 48500 | 2.4576 |
| 67.4931 | 49000 | 2.4426 |
| 68.1818 | 49500 | 2.4698 |
| 68.8705 | 50000 | 2.4604 |
| 69.5592 | 50500 | 2.4515 |
| 70.2479 | 51000 | 2.4804 |
| 70.9366 | 51500 | 2.4545 |
| 71.6253 | 52000 | 2.4523 |
| 72.3140 | 52500 | 2.4756 |
| 73.0028 | 53000 | 2.4697 |
| 73.6915 | 53500 | 2.4536 |
| 74.3802 | 54000 | 2.4866 |
| 75.0689 | 54500 | 2.471 |
| 75.7576 | 55000 | 2.483 |
| 76.4463 | 55500 | 2.5002 |
| 77.1350 | 56000 | 2.4849 |
| 77.8237 | 56500 | 2.4848 |
| 78.5124 | 57000 | 2.5047 |
| 79.2011 | 57500 | 2.5143 |
| 79.8898 | 58000 | 2.4879 |
| 80.5785 | 58500 | 2.5093 |
| 81.2672 | 59000 | 2.5247 |
| 81.9559 | 59500 | 2.4915 |
| 82.6446 | 60000 | 2.5124 |
| 83.3333 | 60500 | 2.5056 |
| 84.0220 | 61000 | 2.4767 |
| 84.7107 | 61500 | 2.5068 |
| 85.3994 | 62000 | 2.5173 |
| 86.0882 | 62500 | 2.4911 |
| 86.7769 | 63000 | 2.526 |
| 87.4656 | 63500 | 2.5313 |
| 88.1543 | 64000 | 2.5312 |
| 88.8430 | 64500 | 2.5735 |
| 89.5317 | 65000 | 2.5873 |
| 90.2204 | 65500 | 2.6395 |
| 90.9091 | 66000 | 2.7914 |
| 91.5978 | 66500 | 2.6729 |
| 92.2865 | 67000 | 2.9846 |
| 92.9752 | 67500 | 2.9259 |
| 93.6639 | 68000 | 2.8845 |
| 94.3526 | 68500 | 2.9906 |
| 95.0413 | 69000 | 2.9534 |
| 95.7300 | 69500 | 2.9857 |
| 96.4187 | 70000 | 3.0559 |
| 97.1074 | 70500 | 2.9919 |
| 97.7961 | 71000 | 3.0435 |
| 98.4848 | 71500 | 3.0534 |
| 99.1736 | 72000 | 3.0169 |
| 99.8623 | 72500 | 3.0264 |
</details>
### Framework Versions
- Python: 3.10.11
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.0.1
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
|