SentenceTransformer (all-mpnet-base-v2) fine-tuned using clinical naatives
This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-mpnet-base-v2
- Maximum Sequence Length: 384 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Shobhank-iiitdwd/Clinical_sentence_transformers_mpnet_base_v2")
# Run inference
sentences = [
'assisted…housing benefits',
'Home With Service Facility:',
'Patient with multiple admissions in the past several months, homeless.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 64per_device_eval_batch_size
: 64num_train_epochs
: 100multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 100max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0.6887 | 500 | 3.5133 |
1.3774 | 1000 | 3.2727 |
2.0661 | 1500 | 3.2238 |
2.7548 | 2000 | 3.1758 |
3.4435 | 2500 | 3.1582 |
4.1322 | 3000 | 3.1385 |
4.8209 | 3500 | 3.1155 |
5.5096 | 4000 | 3.1034 |
6.1983 | 4500 | 3.091 |
6.8871 | 5000 | 3.0768 |
7.5758 | 5500 | 3.065 |
8.2645 | 6000 | 3.0632 |
8.9532 | 6500 | 3.0566 |
9.6419 | 7000 | 3.0433 |
0.6887 | 500 | 3.0536 |
1.3774 | 1000 | 3.0608 |
2.0661 | 1500 | 3.0631 |
2.7548 | 2000 | 3.0644 |
3.4435 | 2500 | 3.0667 |
4.1322 | 3000 | 3.07 |
4.8209 | 3500 | 3.0682 |
5.5096 | 4000 | 3.0718 |
6.1983 | 4500 | 3.0719 |
6.8871 | 5000 | 3.0685 |
7.5758 | 5500 | 3.0723 |
8.2645 | 6000 | 3.0681 |
8.9532 | 6500 | 3.0633 |
9.6419 | 7000 | 3.0642 |
10.3306 | 7500 | 3.0511 |
11.0193 | 8000 | 3.0463 |
11.7080 | 8500 | 3.0301 |
12.3967 | 9000 | 3.0163 |
13.0854 | 9500 | 3.0059 |
13.7741 | 10000 | 2.9845 |
14.4628 | 10500 | 2.9705 |
15.1515 | 11000 | 2.9536 |
15.8402 | 11500 | 2.9263 |
16.5289 | 12000 | 2.9199 |
17.2176 | 12500 | 2.8989 |
17.9063 | 13000 | 2.8818 |
18.5950 | 13500 | 2.8735 |
19.2837 | 14000 | 2.852 |
19.9725 | 14500 | 2.8315 |
20.6612 | 15000 | 2.8095 |
21.3499 | 15500 | 2.7965 |
22.0386 | 16000 | 2.7802 |
22.7273 | 16500 | 2.7527 |
23.4160 | 17000 | 2.7547 |
24.1047 | 17500 | 2.7377 |
24.7934 | 18000 | 2.7035 |
25.4821 | 18500 | 2.7102 |
26.1708 | 19000 | 2.6997 |
26.8595 | 19500 | 2.6548 |
27.5482 | 20000 | 2.6704 |
28.2369 | 20500 | 2.6624 |
28.9256 | 21000 | 2.6306 |
29.6143 | 21500 | 2.6358 |
30.3030 | 22000 | 2.634 |
30.9917 | 22500 | 2.6089 |
31.6804 | 23000 | 2.607 |
32.3691 | 23500 | 2.6246 |
33.0579 | 24000 | 2.5947 |
33.7466 | 24500 | 2.5798 |
34.4353 | 25000 | 2.6025 |
35.1240 | 25500 | 2.5824 |
35.8127 | 26000 | 2.5698 |
36.5014 | 26500 | 2.5711 |
37.1901 | 27000 | 2.5636 |
37.8788 | 27500 | 2.5387 |
38.5675 | 28000 | 2.5472 |
39.2562 | 28500 | 2.5455 |
39.9449 | 29000 | 2.5204 |
40.6336 | 29500 | 2.524 |
41.3223 | 30000 | 2.5246 |
42.0110 | 30500 | 2.5125 |
42.6997 | 31000 | 2.5042 |
43.3884 | 31500 | 2.5165 |
44.0771 | 32000 | 2.5187 |
44.7658 | 32500 | 2.4975 |
45.4545 | 33000 | 2.5048 |
46.1433 | 33500 | 2.521 |
46.8320 | 34000 | 2.4825 |
47.5207 | 34500 | 2.5034 |
48.2094 | 35000 | 2.5049 |
48.8981 | 35500 | 2.4886 |
49.5868 | 36000 | 2.4992 |
50.2755 | 36500 | 2.5099 |
50.9642 | 37000 | 2.489 |
51.6529 | 37500 | 2.4825 |
52.3416 | 38000 | 2.4902 |
53.0303 | 38500 | 2.4815 |
53.7190 | 39000 | 2.4723 |
54.4077 | 39500 | 2.4921 |
55.0964 | 40000 | 2.4763 |
55.7851 | 40500 | 2.4692 |
56.4738 | 41000 | 2.4831 |
57.1625 | 41500 | 2.4705 |
57.8512 | 42000 | 2.4659 |
58.5399 | 42500 | 2.4804 |
59.2287 | 43000 | 2.4582 |
59.9174 | 43500 | 2.4544 |
60.6061 | 44000 | 2.4712 |
61.2948 | 44500 | 2.4478 |
61.9835 | 45000 | 2.4428 |
62.6722 | 45500 | 2.4558 |
63.3609 | 46000 | 2.4428 |
64.0496 | 46500 | 2.4399 |
64.7383 | 47000 | 2.4529 |
65.4270 | 47500 | 2.4374 |
66.1157 | 48000 | 2.4543 |
66.8044 | 48500 | 2.4576 |
67.4931 | 49000 | 2.4426 |
68.1818 | 49500 | 2.4698 |
68.8705 | 50000 | 2.4604 |
69.5592 | 50500 | 2.4515 |
70.2479 | 51000 | 2.4804 |
70.9366 | 51500 | 2.4545 |
71.6253 | 52000 | 2.4523 |
72.3140 | 52500 | 2.4756 |
73.0028 | 53000 | 2.4697 |
73.6915 | 53500 | 2.4536 |
74.3802 | 54000 | 2.4866 |
75.0689 | 54500 | 2.471 |
75.7576 | 55000 | 2.483 |
76.4463 | 55500 | 2.5002 |
77.1350 | 56000 | 2.4849 |
77.8237 | 56500 | 2.4848 |
78.5124 | 57000 | 2.5047 |
79.2011 | 57500 | 2.5143 |
79.8898 | 58000 | 2.4879 |
80.5785 | 58500 | 2.5093 |
81.2672 | 59000 | 2.5247 |
81.9559 | 59500 | 2.4915 |
82.6446 | 60000 | 2.5124 |
83.3333 | 60500 | 2.5056 |
84.0220 | 61000 | 2.4767 |
84.7107 | 61500 | 2.5068 |
85.3994 | 62000 | 2.5173 |
86.0882 | 62500 | 2.4911 |
86.7769 | 63000 | 2.526 |
87.4656 | 63500 | 2.5313 |
88.1543 | 64000 | 2.5312 |
88.8430 | 64500 | 2.5735 |
89.5317 | 65000 | 2.5873 |
90.2204 | 65500 | 2.6395 |
90.9091 | 66000 | 2.7914 |
91.5978 | 66500 | 2.6729 |
92.2865 | 67000 | 2.9846 |
92.9752 | 67500 | 2.9259 |
93.6639 | 68000 | 2.8845 |
94.3526 | 68500 | 2.9906 |
95.0413 | 69000 | 2.9534 |
95.7300 | 69500 | 2.9857 |
96.4187 | 70000 | 3.0559 |
97.1074 | 70500 | 2.9919 |
97.7961 | 71000 | 3.0435 |
98.4848 | 71500 | 3.0534 |
99.1736 | 72000 | 3.0169 |
99.8623 | 72500 | 3.0264 |
Framework Versions
- Python: 3.10.11
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.0.1
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
- Downloads last month
- 44
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Shobhank-iiitdwd/Clinical_sentence_transformers_mpnet_base_v2
Base model
sentence-transformers/all-mpnet-base-v2