ShkalikovOleh's picture
End of training
ef86d3c verified
metadata
library_name: transformers
license: mit
base_model: microsoft/mdeberta-v3-base
tags:
  - generated_from_trainer
datasets:
  - google/xtreme
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: mdeberta-v3-base-panx-wikiann-en
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: google/xtreme PAN-X.en
          type: google/xtreme
          args: PAN-X.en
        metrics:
          - name: Precision
            type: precision
            value: 0.8285338502007477
          - name: Recall
            type: recall
            value: 0.8461049059804892
          - name: F1
            type: f1
            value: 0.8372271964185787
          - name: Accuracy
            type: accuracy
            value: 0.9318317274262442

mdeberta-v3-base-panx-wikiann-en

This model is a fine-tuned version of microsoft/mdeberta-v3-base on the google/xtreme PAN-X.en dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2520
  • Precision: 0.8285
  • Recall: 0.8461
  • F1: 0.8372
  • Accuracy: 0.9318

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.4565 1.0 625 0.2651 0.7942 0.8198 0.8068 0.9215
0.2612 2.0 1250 0.2490 0.8043 0.8285 0.8162 0.9257
0.2184 3.0 1875 0.2471 0.8175 0.8353 0.8263 0.9294
0.1636 4.0 2500 0.2493 0.8195 0.8434 0.8313 0.9308
0.1408 5.0 3125 0.2520 0.8285 0.8461 0.8372 0.9318

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1