DOLG in torch and tensorflow (TF2)

Re-implementation (Non Official) of the paper DOLG: Single-Stage Image Retrieval with Deep Orthogonal Fusion of Local and Global Features accepted at ICCV 2021. paper

The pytorch checkpoint has been converted into tensorflow format (.h5) from this repository : https://github.com/feymanpriv/DOLG (Official)

Installation

pip install opencv-python==4.5.5.64

pip install huggingface-hub

to install dolg :

pip install dolg OR pip install -e .

Inference

To do some inference on single sample, you can use python script in examples/ folder or use as follows:

import dolg
import numpy as np
from dolg.utils.extraction import process_data

depth = 50

# for pytorch

import torch
from dolg.dolg_model_pt import DOLG
from dolg.resnet_pt import ResNet

backbone = ResNet(depth=depth, num_groups=1, width_per_group=64, bn_eps=1e-5, 
             bn_mom=0.1, trans_fun="bottleneck_transform")
model = DOLG(backbone, s4_dim=2048, s3_dim=1024, s2_dim=512, head_reduction_dim=512,
             with_ma=False, num_classes=None, pretrained=f"r{depth}")
img = process_data("image.jpg", "", mode="pt").unsqueeze(0)

with torch.no_grad():
    output = model(img)
print(output)

# for tensorflow

import tensorflow as tf
from dolg.dolg_model_tf2 import DOLG
from dolg.resnet_tf2 import ResNet


backbone = ResNet(depth=depth, num_groups=1, width_per_group=64, bn_eps=1e-5, 
             bn_mom=0.1, trans_fun="bottleneck_transform", name="globalmodel")
model = DOLG(backbone, s4_dim=2048, s3_dim=1024, s2_dim=512, head_reduction_dim=512,
             with_ma=False, num_classes=None, pretrained=f"r{depth}")
img = process_data("image.jpg", "", mode="tf")
img = np.expand_dims(img, axis=0)
output = model.predict(img)
print(output)

Data

The model has been trained on google landmark v2. You can find the dataset on the official repository : https://github.com/cvdfoundation/google-landmark .

Citation :


@misc{yang2021dolg,
      title={DOLG: Single-Stage Image Retrieval with Deep Orthogonal Fusion of Local and Global Features}, 
      author={Min Yang and Dongliang He and Miao Fan and Baorong Shi and Xuetong Xue and Fu Li and Errui Ding and Jizhou Huang},
      year={2021},
      eprint={2108.02927},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}


@misc{https://doi.org/10.48550/arxiv.2004.01804,
  doi = {10.48550/ARXIV.2004.01804},
  
  url = {https://arxiv.org/abs/2004.01804},
  
  author = {Weyand, Tobias and Araujo, Andre and Cao, Bingyi and Sim, Jack},
  
  keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences},
  
  title = {Google Landmarks Dataset v2 -- A Large-Scale Benchmark for Instance-Level Recognition and Retrieval},
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.