llama-3-8B-fine-tuned-dora

im

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on openassistant-guanaco dataset. For LoraConfig we set the use_dora=True for the Dora decomposition and comparison with Lora.

Inference

import os
from os.path import exists, join, isdir
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, GenerationConfig
from peft import PeftModel
from peft.tuners.lora import LoraLayer
import accelerate

# Update variables!
max_new_tokens = 100
top_p = 0.9
temperature=0.7
user_question = "What is  central limit theorem?"

# Base model
model_name_or_path = 'meta-llama/Meta-Llama-3-8B' # Change it to 'YOUR_BASE_MODEL'
adapter_path = 'ShirinYamani/llama-3-8B-fine-tuned-dora' # Change it to 'YOUR_ADAPTER_PATH'

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
# if you wanna use LLaMA HF then fix the early conversion issues.
tokenizer.bos_token_id = 1

# Load the model (use bf16 for faster inference)
model = AutoModelForCausalLM.from_pretrained(
    model_name_or_path,
    torch_dtype=torch.bfloat16,
    device_map={"": 0},
    quantization_config=BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_compute_dtype=torch.bfloat16,
        bnb_4bit_use_double_quant=True,
        bnb_4bit_quant_type='nf4',
    )
)

model = PeftModel.from_pretrained(model, adapter_path)
model.eval()

prompt = (
    "A chat between a curious human and an artificial intelligence assistant. "
    "The assistant gives helpful, detailed, and polite answers to the user's questions. "
    "### Human: {user_question}"
    "### Assistant: "
)

def generate(model, user_question, max_new_tokens=max_new_tokens, top_p=top_p, temperature=temperature):
    inputs = tokenizer(prompt.format(user_question=user_question), return_tensors="pt").to('cuda')

    outputs = model.generate(
        **inputs,
        generation_config=GenerationConfig(
            do_sample=True,
            max_new_tokens=max_new_tokens,
            top_p=top_p,
            temperature=temperature,
        )
    )

    text = tokenizer.decode(outputs[0], skip_special_tokens=True)
    #print(text)
    return text

generate(model, user_question)

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2
  • training_steps: 10
  • mixed_precision_training: Native AMP

Framework versions

  • PEFT 0.11.2.dev0
  • Transformers 4.42.0.dev0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for ShirinYamani/llama-3-8B-fine-tuned-dora

Finetuned
(373)
this model

Dataset used to train ShirinYamani/llama-3-8B-fine-tuned-dora