File size: 2,756 Bytes
64cb4fe
 
 
 
 
 
4bd68ff
 
 
64cb4fe
e96b2d3
 
998af70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
datasets:
- nkp37/OpenVid-1M
base_model:
- ali-vilab/i2vgen-xl
- THUDM/CogVideoX-5b
tags:
- video-to-video
- video-super-resolution
---
# STAR: Spatial-Temporal Augmentation with Text-to-Video Models for Real-World Video Super-Resolution

### Code: https://github.com/NJU-PCALab/STAR
### Paper: https://arxiv.org/abs/2501.02976
### Project Page: https://nju-pcalab.github.io/projects/STAR
### Demo Video: https://youtu.be/hx0zrql-SrU


## ⚙️ Dependencies and Installation
```
## git clone this repository
git clone https://github.com/NJU-PCALab/STAR.git
cd STAR

## create an environment
conda create -n star python=3.10
conda activate star
pip install -r requirements.txt
sudo apt-get update && apt-get install ffmpeg libsm6 libxext6  -y
```

## 🚀 Inference

### Model Weight
| Base Model | Type | URL |
|------------|--------|-----------------------------------------------------------------------------------------------|
| I2VGen-XL | Light Degradation | [:link:](https://huggingface.co/SherryX/STAR/resolve/main/I2VGen-XL-based/light_deg.pt?download=true) |
| I2VGen-XL | Heavy Degradation | [:link:](https://huggingface.co/SherryX/STAR/resolve/main/I2VGen-XL-based/heavy_deg.pt?download=true) |
| CogVideoX-5B | Heavy Degradation | [:link:](https://huggingface.co/SherryX/STAR/tree/main/CogVideoX-5B-based) |

### 1. I2VGen-XL-based 
#### Step 1: Download the pretrained model STAR from [HuggingFace](https://huggingface.co/SherryX/STAR).
We provide two verisions for I2VGen-XL-based model, `heavy_deg.pt` for heavy degraded videos and `light_deg.pt` for light degraded videos (e.g., the low-resolution video downloaded from video websites).

You can put the weight into `pretrained_weight/`.

#### Step 2: Prepare testing data
You can put the testing videos in the `input/video/`.

As for the prompt, there are three options: 1. No prompt. 2. Automatically generate a prompt [using Pllava](https://github.com/hpcaitech/Open-Sora/tree/main/tools/caption#pllava-captioning). 3. Manually write the prompt. You can put the txt file in the `input/text/`.


#### Step 3: Change the path
You need to change the paths in `video_super_resolution/scripts/inference_sr.sh` to your local corresponding paths, including `video_folder_path`, `txt_file_path`, `model_path`, and `save_dir`.


#### Step 4: Running inference command
```
bash video_super_resolution/scripts/inference_sr.sh
```
If you encounter an OOM problem, you can set a smaller `frame_length` in `inference_sr.sh`.

### 2. CogVideoX-based
Refer to these [instructions](https://github.com/NJU-PCALab/STAR/tree/main/cogvideox-based#cogvideox-based-model-inference) for inference with the CogVideX-5B-based model.

Please note that the CogVideX-5B-based model supports only 720x480 input.