Update README.md
Browse files
README.md
CHANGED
|
@@ -1,5 +1,54 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
### Code: https://github.com/NJU-PCALab/STAR
|
| 2 |
+
### Paper: https://arxiv.org/abs/2501.02976
|
| 3 |
+
### Project Page: https://nju-pcalab.github.io/projects/STAR
|
| 4 |
+
### Demo Video: https://youtu.be/hx0zrql-SrU
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
## ⚙️ Dependencies and Installation
|
| 8 |
+
```
|
| 9 |
+
## git clone this repository
|
| 10 |
+
git clone https://github.com/NJU-PCALab/STAR.git
|
| 11 |
+
cd STAR
|
| 12 |
+
|
| 13 |
+
## create an environment
|
| 14 |
+
conda create -n star python=3.10
|
| 15 |
+
conda activate star
|
| 16 |
+
pip install -r requirements.txt
|
| 17 |
+
sudo apt-get update && apt-get install ffmpeg libsm6 libxext6 -y
|
| 18 |
+
```
|
| 19 |
+
|
| 20 |
+
## 🚀 Inference
|
| 21 |
+
|
| 22 |
+
### Model Weight
|
| 23 |
+
| Base Model | Type | URL |
|
| 24 |
+
|------------|--------|-----------------------------------------------------------------------------------------------|
|
| 25 |
+
| I2VGen-XL | Light Degradation | [:link:](https://huggingface.co/SherryX/STAR/resolve/main/I2VGen-XL-based/light_deg.pt?download=true) |
|
| 26 |
+
| I2VGen-XL | Heavy Degradation | [:link:](https://huggingface.co/SherryX/STAR/resolve/main/I2VGen-XL-based/heavy_deg.pt?download=true) |
|
| 27 |
+
| CogVideoX-5B | Heavy Degradation | [:link:](https://huggingface.co/SherryX/STAR/tree/main/CogVideoX-5B-based) |
|
| 28 |
+
|
| 29 |
+
### 1. I2VGen-XL-based
|
| 30 |
+
#### Step 1: Download the pretrained model STAR from [HuggingFace](https://huggingface.co/SherryX/STAR).
|
| 31 |
+
We provide two verisions for I2VGen-XL-based model, `heavy_deg.pt` for heavy degraded videos and `light_deg.pt` for light degraded videos (e.g., the low-resolution video downloaded from video websites).
|
| 32 |
+
|
| 33 |
+
You can put the weight into `pretrained_weight/`.
|
| 34 |
+
|
| 35 |
+
#### Step 2: Prepare testing data
|
| 36 |
+
You can put the testing videos in the `input/video/`.
|
| 37 |
+
|
| 38 |
+
As for the prompt, there are three options: 1. No prompt. 2. Automatically generate a prompt [using Pllava](https://github.com/hpcaitech/Open-Sora/tree/main/tools/caption#pllava-captioning). 3. Manually write the prompt. You can put the txt file in the `input/text/`.
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
#### Step 3: Change the path
|
| 42 |
+
You need to change the paths in `video_super_resolution/scripts/inference_sr.sh` to your local corresponding paths, including `video_folder_path`, `txt_file_path`, `model_path`, and `save_dir`.
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
#### Step 4: Running inference command
|
| 46 |
+
```
|
| 47 |
+
bash video_super_resolution/scripts/inference_sr.sh
|
| 48 |
+
```
|
| 49 |
+
If you encounter an OOM problem, you can set a smaller `frame_length` in `inference_sr.sh`.
|
| 50 |
+
|
| 51 |
+
### 2. CogVideoX-based
|
| 52 |
+
Refer to these [instructions](https://github.com/NJU-PCALab/STAR/tree/main/cogvideox-based#cogvideox-based-model-inference) for inference with the CogVideX-5B-based model.
|
| 53 |
+
|
| 54 |
+
Please note that the CogVideX-5B-based model supports only 720x480 input.
|