distilbert-base-uncased-finetuned-emotion-epochs-final
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1824
- Accuracy: 0.937
- F1: 0.9371
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.7914 | 1.0 | 250 | 0.2464 | 0.9185 | 0.9173 |
0.2038 | 2.0 | 500 | 0.1699 | 0.931 | 0.9313 |
0.1364 | 3.0 | 750 | 0.1522 | 0.9325 | 0.9329 |
0.1042 | 4.0 | 1000 | 0.1579 | 0.931 | 0.9306 |
0.0839 | 5.0 | 1250 | 0.1553 | 0.937 | 0.9366 |
0.0713 | 6.0 | 1500 | 0.1517 | 0.939 | 0.9394 |
0.0581 | 7.0 | 1750 | 0.1722 | 0.9405 | 0.9409 |
0.0479 | 8.0 | 2000 | 0.1758 | 0.938 | 0.9385 |
0.0414 | 9.0 | 2250 | 0.1805 | 0.939 | 0.9390 |
0.0361 | 10.0 | 2500 | 0.1824 | 0.937 | 0.9371 |
Framework versions
- Transformers 4.16.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1
- Downloads last month
- 0