distilbert-base-uncased-distilled-clinc

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2846
  • Accuracy: 0.9494

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 48
  • eval_batch_size: 48
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.8274 1.0 318 2.0336 0.7442
1.5283 2.0 636 0.9644 0.8735
0.7339 3.0 954 0.5207 0.9219
0.4104 4.0 1272 0.3852 0.9371
0.2922 5.0 1590 0.3389 0.9452
0.2433 6.0 1908 0.3266 0.9423
0.2211 7.0 2226 0.3079 0.9497
0.208 8.0 2544 0.3068 0.9490
0.2006 9.0 2862 0.3003 0.9497
0.1955 10.0 3180 0.2963 0.9503
0.1917 11.0 3498 0.2938 0.95
0.1885 12.0 3816 0.2913 0.9487
0.1862 13.0 4134 0.2903 0.9503
0.1846 14.0 4452 0.2927 0.9474
0.1829 15.0 4770 0.2927 0.9490
0.1823 16.0 5088 0.2894 0.9484
0.1807 17.0 5406 0.2894 0.9455
0.1795 18.0 5724 0.2884 0.9477
0.1788 19.0 6042 0.2862 0.9494
0.1781 20.0 6360 0.2868 0.9494
0.1775 21.0 6678 0.2871 0.9484
0.1767 22.0 6996 0.2908 0.9490
0.1758 23.0 7314 0.2845 0.95
0.1758 24.0 7632 0.2893 0.9497
0.1756 25.0 7950 0.2855 0.9490
0.175 26.0 8268 0.2867 0.9481
0.1748 27.0 8586 0.2846 0.9477
0.1745 28.0 8904 0.2847 0.9490
0.1742 29.0 9222 0.2842 0.9490
0.1743 30.0 9540 0.2846 0.9494

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
67.1M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for Shaurya-Shsin/distilbert-base-uncased-distilled-clinc

Finetuned
(7973)
this model