metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: distilbert-training-1
results: []
distilbert-training-1
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0337
- Accuracy: 0.9940
- Precision: 1.0
- Recall: 0.9875
- F1: 0.9937
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
No log | 0.25 | 85 | 0.0878 | 0.9819 | 0.9787 | 0.9840 | 0.9813 |
No log | 0.5 | 170 | 0.0763 | 0.9819 | 1.0 | 0.9626 | 0.9809 |
No log | 0.75 | 255 | 0.0487 | 0.9880 | 0.9841 | 0.9911 | 0.9876 |
0.088 | 1.0 | 340 | 0.0411 | 0.9931 | 1.0 | 0.9857 | 0.9928 |
0.088 | 1.25 | 425 | 0.0417 | 0.9914 | 0.9964 | 0.9857 | 0.9910 |
0.088 | 1.5 | 510 | 0.0423 | 0.9923 | 0.9946 | 0.9893 | 0.9920 |
0.088 | 1.76 | 595 | 0.0404 | 0.9931 | 1.0 | 0.9857 | 0.9928 |
0.0325 | 2.01 | 680 | 0.0459 | 0.9931 | 1.0 | 0.9857 | 0.9928 |
0.0325 | 2.26 | 765 | 0.0336 | 0.9940 | 1.0 | 0.9875 | 0.9937 |
0.0325 | 2.51 | 850 | 0.0358 | 0.9931 | 1.0 | 0.9857 | 0.9928 |
0.0325 | 2.76 | 935 | 0.0413 | 0.9931 | 1.0 | 0.9857 | 0.9928 |
0.0236 | 3.01 | 1020 | 0.0423 | 0.9931 | 1.0 | 0.9857 | 0.9928 |
0.0236 | 3.26 | 1105 | 0.0399 | 0.9940 | 1.0 | 0.9875 | 0.9937 |
0.0236 | 3.51 | 1190 | 0.0380 | 0.9940 | 1.0 | 0.9875 | 0.9937 |
0.0236 | 3.76 | 1275 | 0.0357 | 0.9940 | 1.0 | 0.9875 | 0.9937 |
0.0222 | 4.01 | 1360 | 0.0364 | 0.9940 | 1.0 | 0.9875 | 0.9937 |
0.0222 | 4.26 | 1445 | 0.0351 | 0.9940 | 1.0 | 0.9875 | 0.9937 |
0.0222 | 4.51 | 1530 | 0.0329 | 0.9940 | 1.0 | 0.9875 | 0.9937 |
0.0222 | 4.76 | 1615 | 0.0337 | 0.9940 | 1.0 | 0.9875 | 0.9937 |
Framework versions
- Transformers 4.33.1
- Pytorch 2.2.0.dev20230913+cu121
- Tokenizers 0.13.3