DIALOGUE_one_

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2117
  • Precision: 0.9762
  • Recall: 0.9737
  • F1: 0.9736
  • Accuracy: 0.9737

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.9949 0.62 30 0.4697 0.9659 0.9605 0.9603 0.9605
0.3831 1.25 60 0.1338 0.9762 0.9737 0.9736 0.9737
0.1135 1.88 90 0.1407 0.9762 0.9737 0.9736 0.9737
0.0256 2.5 120 0.1359 0.9762 0.9737 0.9736 0.9737
0.0126 3.12 150 0.1449 0.9762 0.9737 0.9736 0.9737
0.0227 3.75 180 0.1552 0.9762 0.9737 0.9736 0.9737
0.0051 4.38 210 0.1573 0.9762 0.9737 0.9736 0.9737
0.0037 5.0 240 0.1594 0.9762 0.9737 0.9736 0.9737
0.003 5.62 270 0.1626 0.9762 0.9737 0.9736 0.9737
0.0024 6.25 300 0.1645 0.9762 0.9737 0.9736 0.9737
0.0021 6.88 330 0.1737 0.9762 0.9737 0.9736 0.9737
0.0018 7.5 360 0.1759 0.9762 0.9737 0.9736 0.9737
0.0015 8.12 390 0.1774 0.9762 0.9737 0.9736 0.9737
0.0014 8.75 420 0.1801 0.9762 0.9737 0.9736 0.9737
0.0013 9.38 450 0.1837 0.9762 0.9737 0.9736 0.9737
0.0011 10.0 480 0.1852 0.9762 0.9737 0.9736 0.9737
0.001 10.62 510 0.1878 0.9762 0.9737 0.9736 0.9737
0.0009 11.25 540 0.1892 0.9762 0.9737 0.9736 0.9737
0.0009 11.88 570 0.1939 0.9762 0.9737 0.9736 0.9737
0.0008 12.5 600 0.1948 0.9762 0.9737 0.9736 0.9737
0.0008 13.12 630 0.1961 0.9762 0.9737 0.9736 0.9737
0.0007 13.75 660 0.1965 0.9762 0.9737 0.9736 0.9737
0.0007 14.38 690 0.1972 0.9762 0.9737 0.9736 0.9737
0.0006 15.0 720 0.1988 0.9762 0.9737 0.9736 0.9737
0.0006 15.62 750 0.1993 0.9762 0.9737 0.9736 0.9737
0.0005 16.25 780 0.2006 0.9762 0.9737 0.9736 0.9737
0.0005 16.88 810 0.2020 0.9762 0.9737 0.9736 0.9737
0.0005 17.5 840 0.2031 0.9762 0.9737 0.9736 0.9737
0.0005 18.12 870 0.2045 0.9762 0.9737 0.9736 0.9737
0.0005 18.75 900 0.2054 0.9762 0.9737 0.9736 0.9737
0.0004 19.38 930 0.2051 0.9762 0.9737 0.9736 0.9737
0.0004 20.0 960 0.2053 0.9762 0.9737 0.9736 0.9737
0.0004 20.62 990 0.2058 0.9762 0.9737 0.9736 0.9737
0.0004 21.25 1020 0.2069 0.9762 0.9737 0.9736 0.9737
0.0004 21.88 1050 0.2076 0.9762 0.9737 0.9736 0.9737
0.0004 22.5 1080 0.2079 0.9762 0.9737 0.9736 0.9737
0.0004 23.12 1110 0.2084 0.9762 0.9737 0.9736 0.9737
0.0004 23.75 1140 0.2092 0.9762 0.9737 0.9736 0.9737
0.0004 24.38 1170 0.2095 0.9762 0.9737 0.9736 0.9737
0.0004 25.0 1200 0.2100 0.9762 0.9737 0.9736 0.9737
0.0004 25.62 1230 0.2104 0.9762 0.9737 0.9736 0.9737
0.0003 26.25 1260 0.2109 0.9762 0.9737 0.9736 0.9737
0.0003 26.88 1290 0.2111 0.9762 0.9737 0.9736 0.9737
0.0003 27.5 1320 0.2113 0.9762 0.9737 0.9736 0.9737
0.0003 28.12 1350 0.2115 0.9762 0.9737 0.9736 0.9737
0.0003 28.75 1380 0.2116 0.9762 0.9737 0.9736 0.9737
0.0003 29.38 1410 0.2117 0.9762 0.9737 0.9736 0.9737
0.0004 30.0 1440 0.2117 0.9762 0.9737 0.9736 0.9737

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
10
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for SharonTudi/DIALOGUE_one_

Finetuned
(7287)
this model