This model is a finetuned version of Sharathhebbar24/chat_gpt2
using Intel/orca_dpo_pairs
on DPO
Model description
GPT-2 is a transformers model pre-trained on a very large corpus of English data in a self-supervised fashion. This means it was pre-trained on the raw texts only, with no humans labeling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences.
More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence,
shifting one token (word or piece of word) to the right. The model uses a masking mechanism to make sure the
predictions for the token i
only use the inputs from 1
to i
but not the future tokens.
This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was trained for, however, which is generating texts from a prompt.
To use this model
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> model_name = "Sharathhebbar24/chat_gpt2_dpo"
>>> model = AutoModelForCausalLM.from_pretrained(model_name)
>>> tokenizer = AutoTokenizer.from_pretrained(model_name)
>>> def generate_text(prompt):
>>> inputs = tokenizer.encode(prompt, return_tensors='pt')
>>> outputs = model.generate(inputs, max_length=64, pad_token_id=tokenizer.eos_token_id)
>>> generated = tokenizer.decode(outputs[0], skip_special_tokens=True)
>>> return generated[:generated.rfind(".")+1]
>>> prompt = """
>>> user: what are you?
>>> assistant: I am a Chatbot intended to give a python program
>>> user: hmm, can you write a python program to print Hii Heloo
>>> assistant: Sure Here is a python code.\n print("Hii Heloo")
>>> user: Can you write a Linear search program in python
>>> """
>>> res = generate_text(prompt)
>>> res
Benchmark / Evaluation
Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8k |
---|---|---|---|---|---|---|---|
Sharathhebbar24/chat_gpt2_dpo | 28.56 | 23.98 | 31.22 | 24.95 | 41.26 | 49.96 | 0 |
{
"all": {
"acc": 0.24915779048270345,
"acc_stderr": 0.030509906389610868,
"acc_norm": 0.25041231816215265,
"acc_norm_stderr": 0.03132600249114931,
"mc1": 0.2521419828641371,
"mc1_stderr": 0.015201522246299965,
"mc2": 0.41257163824244014,
"mc2_stderr": 0.015127188811834062
},
"harness|arc:challenge|25": {
"acc": 0.18686006825938567,
"acc_stderr": 0.011391015649694391,
"acc_norm": 0.23976109215017063,
"acc_norm_stderr": 0.012476304127453954
},
"harness|hellaswag|10": {
"acc": 0.28978291177056364,
"acc_stderr": 0.004527343651130803,
"acc_norm": 0.3121888070105557,
"acc_norm_stderr": 0.0046243936909668975
},
"harness|hendrycksTest-abstract_algebra|5": {
"acc": 0.22,
"acc_stderr": 0.04163331998932268,
"acc_norm": 0.22,
"acc_norm_stderr": 0.04163331998932268
},
"harness|hendrycksTest-anatomy|5": {
"acc": 0.3037037037037037,
"acc_stderr": 0.039725528847851375,
"acc_norm": 0.3037037037037037,
"acc_norm_stderr": 0.039725528847851375
},
"harness|hendrycksTest-astronomy|5": {
"acc": 0.17763157894736842,
"acc_stderr": 0.031103182383123398,
"acc_norm": 0.17763157894736842,
"acc_norm_stderr": 0.031103182383123398
},
"harness|hendrycksTest-business_ethics|5": {
"acc": 0.26,
"acc_stderr": 0.0440844002276808,
"acc_norm": 0.26,
"acc_norm_stderr": 0.0440844002276808
},
"harness|hendrycksTest-clinical_knowledge|5": {
"acc": 0.23018867924528302,
"acc_stderr": 0.025907897122408173,
"acc_norm": 0.23018867924528302,
"acc_norm_stderr": 0.025907897122408173
},
"harness|hendrycksTest-college_biology|5": {
"acc": 0.2569444444444444,
"acc_stderr": 0.03653946969442099,
"acc_norm": 0.2569444444444444,
"acc_norm_stderr": 0.03653946969442099
},
"harness|hendrycksTest-college_chemistry|5": {
"acc": 0.19,
"acc_stderr": 0.039427724440366234,
"acc_norm": 0.19,
"acc_norm_stderr": 0.039427724440366234
},
"harness|hendrycksTest-college_computer_science|5": {
"acc": 0.24,
"acc_stderr": 0.04292346959909283,
"acc_norm": 0.24,
"acc_norm_stderr": 0.04292346959909283
},
"harness|hendrycksTest-college_mathematics|5": {
"acc": 0.29,
"acc_stderr": 0.04560480215720684,
"acc_norm": 0.29,
"acc_norm_stderr": 0.04560480215720684
},
"harness|hendrycksTest-college_medicine|5": {
"acc": 0.2543352601156069,
"acc_stderr": 0.0332055644308557,
"acc_norm": 0.2543352601156069,
"acc_norm_stderr": 0.0332055644308557
},
"harness|hendrycksTest-college_physics|5": {
"acc": 0.21568627450980393,
"acc_stderr": 0.04092563958237654,
"acc_norm": 0.21568627450980393,
"acc_norm_stderr": 0.04092563958237654
},
"harness|hendrycksTest-computer_security|5": {
"acc": 0.34,
"acc_stderr": 0.04760952285695236,
"acc_norm": 0.34,
"acc_norm_stderr": 0.04760952285695236
},
"harness|hendrycksTest-conceptual_physics|5": {
"acc": 0.26382978723404255,
"acc_stderr": 0.028809989854102973,
"acc_norm": 0.26382978723404255,
"acc_norm_stderr": 0.028809989854102973
},
"harness|hendrycksTest-econometrics|5": {
"acc": 0.24561403508771928,
"acc_stderr": 0.04049339297748142,
"acc_norm": 0.24561403508771928,
"acc_norm_stderr": 0.04049339297748142
},
"harness|hendrycksTest-electrical_engineering|5": {
"acc": 0.2413793103448276,
"acc_stderr": 0.03565998174135302,
"acc_norm": 0.2413793103448276,
"acc_norm_stderr": 0.03565998174135302
},
"harness|hendrycksTest-elementary_mathematics|5": {
"acc": 0.24074074074074073,
"acc_stderr": 0.02201908001221789,
"acc_norm": 0.24074074074074073,
"acc_norm_stderr": 0.02201908001221789
},
"harness|hendrycksTest-formal_logic|5": {
"acc": 0.1349206349206349,
"acc_stderr": 0.030557101589417515,
"acc_norm": 0.1349206349206349,
"acc_norm_stderr": 0.030557101589417515
},
"harness|hendrycksTest-global_facts|5": {
"acc": 0.16,
"acc_stderr": 0.03684529491774708,
"acc_norm": 0.16,
"acc_norm_stderr": 0.03684529491774708
},
"harness|hendrycksTest-high_school_biology|5": {
"acc": 0.1774193548387097,
"acc_stderr": 0.02173254068932927,
"acc_norm": 0.1774193548387097,
"acc_norm_stderr": 0.02173254068932927
},
"harness|hendrycksTest-high_school_chemistry|5": {
"acc": 0.24630541871921183,
"acc_stderr": 0.030315099285617736,
"acc_norm": 0.24630541871921183,
"acc_norm_stderr": 0.030315099285617736
},
"harness|hendrycksTest-high_school_computer_science|5": {
"acc": 0.28,
"acc_stderr": 0.04512608598542126,
"acc_norm": 0.28,
"acc_norm_stderr": 0.04512608598542126
},
"harness|hendrycksTest-high_school_european_history|5": {
"acc": 0.21818181818181817,
"acc_stderr": 0.03225078108306289,
"acc_norm": 0.21818181818181817,
"acc_norm_stderr": 0.03225078108306289
},
"harness|hendrycksTest-high_school_geography|5": {
"acc": 0.3282828282828283,
"acc_stderr": 0.03345678422756776,
"acc_norm": 0.3282828282828283,
"acc_norm_stderr": 0.03345678422756776
},
"harness|hendrycksTest-high_school_government_and_politics|5": {
"acc": 0.37305699481865284,
"acc_stderr": 0.03490205592048573,
"acc_norm": 0.37305699481865284,
"acc_norm_stderr": 0.03490205592048573
},
"harness|hendrycksTest-high_school_macroeconomics|5": {
"acc": 0.26666666666666666,
"acc_stderr": 0.02242127361292371,
"acc_norm": 0.26666666666666666,
"acc_norm_stderr": 0.02242127361292371
},
"harness|hendrycksTest-high_school_mathematics|5": {
"acc": 0.21481481481481482,
"acc_stderr": 0.025040443877000683,
"acc_norm": 0.21481481481481482,
"acc_norm_stderr": 0.025040443877000683
},
"harness|hendrycksTest-high_school_microeconomics|5": {
"acc": 0.22268907563025211,
"acc_stderr": 0.027025433498882364,
"acc_norm": 0.22268907563025211,
"acc_norm_stderr": 0.027025433498882364
},
"harness|hendrycksTest-high_school_physics|5": {
"acc": 0.23178807947019867,
"acc_stderr": 0.034454062719870546,
"acc_norm": 0.23178807947019867,
"acc_norm_stderr": 0.034454062719870546
},
"harness|hendrycksTest-high_school_psychology|5": {
"acc": 0.3302752293577982,
"acc_stderr": 0.02016446633634298,
"acc_norm": 0.3302752293577982,
"acc_norm_stderr": 0.02016446633634298
},
"harness|hendrycksTest-high_school_statistics|5": {
"acc": 0.19444444444444445,
"acc_stderr": 0.026991454502036733,
"acc_norm": 0.19444444444444445,
"acc_norm_stderr": 0.026991454502036733
},
"harness|hendrycksTest-high_school_us_history|5": {
"acc": 0.25,
"acc_stderr": 0.03039153369274154,
"acc_norm": 0.25,
"acc_norm_stderr": 0.03039153369274154
},
"harness|hendrycksTest-high_school_world_history|5": {
"acc": 0.26582278481012656,
"acc_stderr": 0.028756799629658342,
"acc_norm": 0.26582278481012656,
"acc_norm_stderr": 0.028756799629658342
},
"harness|hendrycksTest-human_aging|5": {
"acc": 0.17937219730941703,
"acc_stderr": 0.0257498195691928,
"acc_norm": 0.17937219730941703,
"acc_norm_stderr": 0.0257498195691928
},
"harness|hendrycksTest-human_sexuality|5": {
"acc": 0.2366412213740458,
"acc_stderr": 0.037276735755969174,
"acc_norm": 0.2366412213740458,
"acc_norm_stderr": 0.037276735755969174
},
"harness|hendrycksTest-international_law|5": {
"acc": 0.35537190082644626,
"acc_stderr": 0.04369236326573981,
"acc_norm": 0.35537190082644626,
"acc_norm_stderr": 0.04369236326573981
},
"harness|hendrycksTest-jurisprudence|5": {
"acc": 0.25925925925925924,
"acc_stderr": 0.042365112580946336,
"acc_norm": 0.25925925925925924,
"acc_norm_stderr": 0.042365112580946336
},
"harness|hendrycksTest-logical_fallacies|5": {
"acc": 0.2822085889570552,
"acc_stderr": 0.03536117886664742,
"acc_norm": 0.2822085889570552,
"acc_norm_stderr": 0.03536117886664742
},
"harness|hendrycksTest-machine_learning|5": {
"acc": 0.32142857142857145,
"acc_stderr": 0.04432804055291519,
"acc_norm": 0.32142857142857145,
"acc_norm_stderr": 0.04432804055291519
},
"harness|hendrycksTest-management|5": {
"acc": 0.1941747572815534,
"acc_stderr": 0.03916667762822585,
"acc_norm": 0.1941747572815534,
"acc_norm_stderr": 0.03916667762822585
},
"harness|hendrycksTest-marketing|5": {
"acc": 0.2905982905982906,
"acc_stderr": 0.02974504857267404,
"acc_norm": 0.2905982905982906,
"acc_norm_stderr": 0.02974504857267404
},
"harness|hendrycksTest-medical_genetics|5": {
"acc": 0.25,
"acc_stderr": 0.04351941398892446,
"acc_norm": 0.25,
"acc_norm_stderr": 0.04351941398892446
},
"harness|hendrycksTest-miscellaneous|5": {
"acc": 0.23627075351213284,
"acc_stderr": 0.015190473717037497,
"acc_norm": 0.23627075351213284,
"acc_norm_stderr": 0.015190473717037497
},
"harness|hendrycksTest-moral_disputes|5": {
"acc": 0.24566473988439305,
"acc_stderr": 0.02317629820399201,
"acc_norm": 0.24566473988439305,
"acc_norm_stderr": 0.02317629820399201
},
"harness|hendrycksTest-moral_scenarios|5": {
"acc": 0.24581005586592178,
"acc_stderr": 0.014400296429225587,
"acc_norm": 0.24581005586592178,
"acc_norm_stderr": 0.014400296429225587
},
"harness|hendrycksTest-nutrition|5": {
"acc": 0.25163398692810457,
"acc_stderr": 0.024848018263875195,
"acc_norm": 0.25163398692810457,
"acc_norm_stderr": 0.024848018263875195
},
"harness|hendrycksTest-philosophy|5": {
"acc": 0.18006430868167203,
"acc_stderr": 0.021823422857744953,
"acc_norm": 0.18006430868167203,
"acc_norm_stderr": 0.021823422857744953
},
"harness|hendrycksTest-prehistory|5": {
"acc": 0.25617283950617287,
"acc_stderr": 0.024288533637726095,
"acc_norm": 0.25617283950617287,
"acc_norm_stderr": 0.024288533637726095
},
"harness|hendrycksTest-professional_accounting|5": {
"acc": 0.2801418439716312,
"acc_stderr": 0.02678917235114023,
"acc_norm": 0.2801418439716312,
"acc_norm_stderr": 0.02678917235114023
},
"harness|hendrycksTest-professional_law|5": {
"acc": 0.24837027379400262,
"acc_stderr": 0.011035212598034503,
"acc_norm": 0.24837027379400262,
"acc_norm_stderr": 0.011035212598034503
},
"harness|hendrycksTest-professional_medicine|5": {
"acc": 0.3125,
"acc_stderr": 0.02815637344037142,
"acc_norm": 0.3125,
"acc_norm_stderr": 0.02815637344037142
},
"harness|hendrycksTest-professional_psychology|5": {
"acc": 0.25,
"acc_stderr": 0.01751781884501444,
"acc_norm": 0.25,
"acc_norm_stderr": 0.01751781884501444
},
"harness|hendrycksTest-public_relations|5": {
"acc": 0.18181818181818182,
"acc_stderr": 0.03694284335337801,
"acc_norm": 0.18181818181818182,
"acc_norm_stderr": 0.03694284335337801
},
"harness|hendrycksTest-security_studies|5": {
"acc": 0.31020408163265306,
"acc_stderr": 0.029613459872484378,
"acc_norm": 0.31020408163265306,
"acc_norm_stderr": 0.029613459872484378
},
"harness|hendrycksTest-sociology|5": {
"acc": 0.24875621890547264,
"acc_stderr": 0.030567675938916707,
"acc_norm": 0.24875621890547264,
"acc_norm_stderr": 0.030567675938916707
},
"harness|hendrycksTest-us_foreign_policy|5": {
"acc": 0.25,
"acc_stderr": 0.04351941398892446,
"acc_norm": 0.25,
"acc_norm_stderr": 0.04351941398892446
},
"harness|hendrycksTest-virology|5": {
"acc": 0.19879518072289157,
"acc_stderr": 0.03106939026078942,
"acc_norm": 0.19879518072289157,
"acc_norm_stderr": 0.03106939026078942
},
"harness|hendrycksTest-world_religions|5": {
"acc": 0.29239766081871343,
"acc_stderr": 0.034886477134579215,
"acc_norm": 0.29239766081871343,
"acc_norm_stderr": 0.034886477134579215
},
"harness|truthfulqa:mc|0": {
"mc1": 0.2521419828641371,
"mc1_stderr": 0.015201522246299965,
"mc2": 0.41257163824244014,
"mc2_stderr": 0.015127188811834062
},
"harness|winogrande|5": {
"acc": 0.4996053670086819,
"acc_stderr": 0.014052481306049512
},
"harness|gsm8k|5": {
"acc": 0.0,
"acc_stderr": 0.0
}
}
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 28.56 |
AI2 Reasoning Challenge (25-Shot) | 23.98 |
HellaSwag (10-Shot) | 31.22 |
MMLU (5-Shot) | 24.95 |
TruthfulQA (0-shot) | 41.26 |
Winogrande (5-shot) | 49.96 |
GSM8k (5-shot) | 0.00 |
- Downloads last month
- 167
Model tree for Sharathhebbar24/chat_gpt2_dpo
Datasets used to train Sharathhebbar24/chat_gpt2_dpo
Space using Sharathhebbar24/chat_gpt2_dpo 1
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard23.980
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard31.220
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard24.950
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard41.260
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard49.960
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard0.000