output_diff_approach

This model is a fine-tuned version of csebuetnlp/banglabert on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1603
  • 5 Err Precision: 0.0
  • 5 Err Recall: 0.0
  • 5 Err F1: 0.0
  • 5 Err Number: 34
  • Precision: 0.4328
  • Recall: 0.3244
  • F1: 0.3709
  • Number: 9934
  • Err Precision: 0.0
  • Err Recall: 0.0
  • Err F1: 0.0
  • Err Number: 285
  • Egin Err Precision: 0.7528
  • Egin Err Recall: 0.4192
  • Egin Err F1: 0.5385
  • Egin Err Number: 1126
  • El Err Precision: 0.7112
  • El Err Recall: 0.2891
  • El Err F1: 0.4111
  • El Err Number: 1380
  • Nd Err Precision: 0.6986
  • Nd Err Recall: 0.4487
  • Nd Err F1: 0.5464
  • Nd Err Number: 1188
  • Ne Word Err Precision: 0.7223
  • Ne Word Err Recall: 0.6297
  • Ne Word Err F1: 0.6728
  • Ne Word Err Number: 8247
  • Unc Insert Err Precision: 0.6140
  • Unc Insert Err Recall: 0.0776
  • Unc Insert Err F1: 0.1378
  • Unc Insert Err Number: 902
  • Micro Avg Precision: 0.5922
  • Micro Avg Recall: 0.4282
  • Micro Avg F1: 0.4970
  • Micro Avg Number: 23096
  • Macro Avg Precision: 0.4915
  • Macro Avg Recall: 0.2736
  • Macro Avg F1: 0.3347
  • Macro Avg Number: 23096
  • Weighted Avg Precision: 0.5832
  • Weighted Avg Recall: 0.4282
  • Weighted Avg F1: 0.4841
  • Weighted Avg Number: 23096
  • Overall Accuracy: 0.9514

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 2.0

Training results

Training Loss Epoch Step Validation Loss 5 Err Precision 5 Err Recall 5 Err F1 5 Err Number Precision Recall F1 Number Err Precision Err Recall Err F1 Err Number Egin Err Precision Egin Err Recall Egin Err F1 Egin Err Number El Err Precision El Err Recall El Err F1 El Err Number Nd Err Precision Nd Err Recall Nd Err F1 Nd Err Number Ne Word Err Precision Ne Word Err Recall Ne Word Err F1 Ne Word Err Number Unc Insert Err Precision Unc Insert Err Recall Unc Insert Err F1 Unc Insert Err Number Micro Avg Precision Micro Avg Recall Micro Avg F1 Micro Avg Number Macro Avg Precision Macro Avg Recall Macro Avg F1 Macro Avg Number Weighted Avg Precision Weighted Avg Recall Weighted Avg F1 Weighted Avg Number Overall Accuracy
0.3987 1.0 575 0.1930 0.0 0.0 0.0 34 0.3517 0.1737 0.2326 9934 0.0 0.0 0.0 285 0.8127 0.2389 0.3693 1126 0.8345 0.1681 0.2799 1380 0.6727 0.3460 0.4569 1188 0.7470 0.4215 0.5389 8247 0.25 0.0011 0.0022 902 0.5670 0.2648 0.3610 23096 0.4586 0.1687 0.2350 23096 0.5519 0.2648 0.3508 23096 0.9422
0.1861 2.0 1150 0.1603 0.0 0.0 0.0 34 0.4328 0.3244 0.3709 9934 0.0 0.0 0.0 285 0.7528 0.4192 0.5385 1126 0.7112 0.2891 0.4111 1380 0.6986 0.4487 0.5464 1188 0.7223 0.6297 0.6728 8247 0.6140 0.0776 0.1378 902 0.5922 0.4282 0.4970 23096 0.4915 0.2736 0.3347 23096 0.5832 0.4282 0.4841 23096 0.9514

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.1+cu117
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.