SetFit with sentence-transformers/all-MiniLM-L6-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/all-MiniLM-L6-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/all-MiniLM-L6-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 256 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
1 |
|
0 |
|
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("Selon ces PDIs, des parents restés ou retournés au village les auraient informées de l’amélioration de la situation sécuritaire.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 25.2763 | 95 |
Label | Training Sample Count |
---|---|
0 | 295 |
1 | 313 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 35
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0008 | 1 | 0.4533 | - |
0.0376 | 50 | 0.3371 | - |
0.0752 | 100 | 0.2585 | - |
0.1128 | 150 | 0.2574 | - |
0.1504 | 200 | 0.2535 | - |
0.1880 | 250 | 0.2513 | - |
0.2256 | 300 | 0.2573 | - |
0.2632 | 350 | 0.246 | - |
0.3008 | 400 | 0.2471 | - |
0.3383 | 450 | 0.247 | - |
0.3759 | 500 | 0.2348 | - |
0.4135 | 550 | 0.2165 | - |
0.4511 | 600 | 0.1911 | - |
0.4887 | 650 | 0.1402 | - |
0.5263 | 700 | 0.0865 | - |
0.5639 | 750 | 0.049 | - |
0.6015 | 800 | 0.0279 | - |
0.6391 | 850 | 0.0188 | - |
0.6767 | 900 | 0.0108 | - |
0.7143 | 950 | 0.0072 | - |
0.7519 | 1000 | 0.0051 | - |
0.7895 | 1050 | 0.0039 | - |
0.8271 | 1100 | 0.0032 | - |
0.8647 | 1150 | 0.0039 | - |
0.9023 | 1200 | 0.0025 | - |
0.9398 | 1250 | 0.0024 | - |
0.9774 | 1300 | 0.0023 | - |
Framework Versions
- Python: 3.11.5
- SetFit: 1.1.0
- Sentence Transformers: 3.1.1
- Transformers: 4.45.1
- PyTorch: 2.1.0
- Datasets: 2.17.1
- Tokenizers: 0.20.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 171
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Sfekih/sentence_independancy_model
Base model
sentence-transformers/all-MiniLM-L6-v2