|
--- |
|
license: apache-2.0 |
|
base_model: google/vit-base-patch16-224-in21k |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: Image-Arousal-new |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Image-Arousal-new |
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.6535 |
|
- Accuracy: 0.4591 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:| |
|
| 1.2322 | 0.1855 | 100 | 1.2411 | 0.4452 | |
|
| 1.1613 | 0.3711 | 200 | 1.2600 | 0.3987 | |
|
| 1.2851 | 0.5566 | 300 | 1.2428 | 0.4052 | |
|
| 1.1931 | 0.7421 | 400 | 1.2041 | 0.4559 | |
|
| 1.1098 | 0.9276 | 500 | 1.1918 | 0.4586 | |
|
| 1.1714 | 1.1132 | 600 | 1.1806 | 0.4721 | |
|
| 1.1216 | 1.2987 | 700 | 1.1692 | 0.4651 | |
|
| 1.2208 | 1.4842 | 800 | 1.1801 | 0.4614 | |
|
| 1.0644 | 1.6698 | 900 | 1.1775 | 0.4596 | |
|
| 1.1638 | 1.8553 | 1000 | 1.2031 | 0.4721 | |
|
| 0.9559 | 2.0408 | 1100 | 1.2392 | 0.4521 | |
|
| 0.8442 | 2.2263 | 1200 | 1.2544 | 0.4661 | |
|
| 0.8713 | 2.4119 | 1300 | 1.2792 | 0.4744 | |
|
| 0.8442 | 2.5974 | 1400 | 1.2618 | 0.4647 | |
|
| 0.831 | 2.7829 | 1500 | 1.3202 | 0.4554 | |
|
| 0.7774 | 2.9685 | 1600 | 1.3087 | 0.4572 | |
|
| 0.5501 | 3.1540 | 1700 | 1.4975 | 0.4600 | |
|
| 0.6069 | 3.3395 | 1800 | 1.5869 | 0.4512 | |
|
| 0.4397 | 3.5250 | 1900 | 1.6458 | 0.4387 | |
|
| 0.4468 | 3.7106 | 2000 | 1.6341 | 0.4493 | |
|
| 0.4198 | 3.8961 | 2100 | 1.6535 | 0.4591 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.1 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.19.0 |
|
- Tokenizers 0.19.1 |
|
|