neocortex-grounded / README.md
SethGA's picture
End of training
cbf84c7 verified
|
raw
history blame
3.61 kB
---
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: NousResearch/Llama-2-7b-hf
model-index:
- name: neocortex-grounded
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: NousResearch/Llama-2-7b-hf
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
is_llama_derived_model: true
hub_model_id: neocortex-grounded
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: SethGA/neocortex_grounded_23k
type: alpaca
shards: 20
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./qlora-out
adapter: qlora
lora_model_dir:
sequence_len: 4096
sample_packing: false
eval_sample_packing: false
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: neocortex
wandb_entity:
wandb_watch:
wandb_run_id:
wandb_log_model: checkpoint
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 3
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
eval_steps: 20
eval_table_size: 5
save_strategy: epoch
save_steps:
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
```
</details><br>
# neocortex-grounded
This model is a fine-tuned version of [NousResearch/Llama-2-7b-hf](https://huggingface.co/NousResearch/Llama-2-7b-hf) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1270
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.7091 | 0.01 | 1 | 1.7034 |
| 1.3312 | 0.29 | 20 | 1.2385 |
| 1.1599 | 0.58 | 40 | 1.1702 |
| 1.1673 | 0.87 | 60 | 1.1425 |
| 1.0802 | 1.16 | 80 | 1.1291 |
| 1.0736 | 1.45 | 100 | 1.1238 |
| 1.0308 | 1.74 | 120 | 1.1185 |
| 1.0042 | 2.03 | 140 | 1.1110 |
| 0.997 | 2.32 | 160 | 1.1274 |
| 0.8535 | 2.61 | 180 | 1.1278 |
| 0.9331 | 2.9 | 200 | 1.1270 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.39.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.17.1
- Tokenizers 0.15.0