distilbert-base-uncased__sst2__train-32-0

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8558
  • Accuracy: 0.7183

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.7088 1.0 13 0.6819 0.6154
0.635 2.0 26 0.6318 0.7692
0.547 3.0 39 0.5356 0.7692
0.3497 4.0 52 0.4456 0.6923
0.1979 5.0 65 0.3993 0.7692
0.098 6.0 78 0.3613 0.7692
0.0268 7.0 91 0.3561 0.9231
0.0137 8.0 104 0.3755 0.9231
0.0083 9.0 117 0.4194 0.7692
0.0065 10.0 130 0.4446 0.7692
0.005 11.0 143 0.4527 0.7692
0.0038 12.0 156 0.4645 0.7692
0.0033 13.0 169 0.4735 0.7692
0.0033 14.0 182 0.4874 0.7692
0.0029 15.0 195 0.5041 0.7692
0.0025 16.0 208 0.5148 0.7692
0.0024 17.0 221 0.5228 0.7692

Framework versions

  • Transformers 4.15.0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.2
  • Tokenizers 0.10.3
Downloads last month
3
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.