whisper-small-hyper-tuned-v2

This model is a fine-tuned version of openai/whisper-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2138
  • Wer: 0.3859

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2719 0.0330 100 0.3551 0.5211
0.2793 0.0660 200 0.3262 0.4921
0.2831 0.0990 300 0.3306 0.4927
0.2775 0.1320 400 0.3631 0.5363
0.2849 0.1650 500 0.3488 0.5040
0.2692 0.1980 600 0.3202 0.4967
0.2528 0.2309 700 0.2838 0.4400
0.2155 0.2639 800 0.2489 0.4116
0.1929 0.2969 900 0.2220 0.3912
0.1709 0.3299 1000 0.2138 0.3859

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.1.0+cu118
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
9
Safetensors
Model size
242M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Sekiraw/whisper-small-hyper-tuned-v2

Finetuned
(2162)
this model
Finetunes
1 model