|
--- |
|
base_model: stable-diffusion-v1-5/stable-diffusion-v1-5 |
|
library_name: diffusers |
|
license: creativeml-openrail-m |
|
tags: |
|
- stable-diffusion |
|
- stable-diffusion-diffusers |
|
- text-to-image |
|
- diffusers |
|
- diffusers-training |
|
- lora |
|
- stable-diffusion |
|
- stable-diffusion-diffusers |
|
- text-to-image |
|
- diffusers |
|
- diffusers-training |
|
- lora |
|
inference: true |
|
datasets: |
|
- logo-wizard/modern-logo-dataset |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the training script had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
|
|
# LoRA text2image fine-tuning - SedatAl/test-test |
|
These are LoRA adaption weights for stable-diffusion-v1-5/stable-diffusion-v1-5. The weights were fine-tuned on the logo-wizard/modern-logo-dataset dataset. |
|
|
|
|
|
![img_1](./7c970728-3193-4d89-8461-514bae4007af.jpeg) |
|
![img_2](./image_2.png) |
|
![img_3](./image_3.png) |
|
|
|
|
|
|
|
## How to Use |
|
|
|
```python |
|
from diffusers import DiffusionPipeline |
|
|
|
pipe = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5") |
|
pipe.load_lora_weights("SedatAl/test-test") |
|
|
|
prompt = "a logo of electronic online shop, gradient image of a rectangular shopping bag with a cursor inside, white background, red and magenta gradient foreground, minimalism, modern" |
|
image = pipe(prompt).images[0] |
|
|
|
``` |
|
|
|
## Training details |
|
|
|
--train_batch_size=10 \ |
|
--max_train_steps=200 \ |
|
--learning_rate=1e-04 \ |
|
|
|
Remaining parameters are default. |