lmv2-g-rai-aRx-refill-230427

This model is a fine-tuned version of microsoft/layoutlmv2-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0176
  • Dob Key Precision: 0.6846
  • Dob Key Recall: 0.7007
  • Dob Key F1: 0.6926
  • Dob Key Number: 598
  • Dob Value Precision: 0.9934
  • Dob Value Recall: 0.9983
  • Dob Value F1: 0.9958
  • Dob Value Number: 599
  • Patient Name Key Precision: 0.6852
  • Patient Name Key Recall: 0.7089
  • Patient Name Key F1: 0.6968
  • Patient Name Key Number: 608
  • Patient Name Value Precision: 0.9581
  • Patient Name Value Recall: 0.9738
  • Patient Name Value F1: 0.9659
  • Patient Name Value Number: 611
  • Provider Name Key Precision: 0.7875
  • Provider Name Key Recall: 0.7903
  • Provider Name Key F1: 0.7889
  • Provider Name Key Number: 558
  • Provider Name Value Precision: 0.9786
  • Provider Name Value Recall: 0.9751
  • Provider Name Value F1: 0.9768
  • Provider Name Value Number: 562
  • Overall Precision: 0.8460
  • Overall Recall: 0.8575
  • Overall F1: 0.8517
  • Overall Accuracy: 0.9936

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Dob Key Precision Dob Key Recall Dob Key F1 Dob Key Number Dob Value Precision Dob Value Recall Dob Value F1 Dob Value Number Patient Name Key Precision Patient Name Key Recall Patient Name Key F1 Patient Name Key Number Patient Name Value Precision Patient Name Value Recall Patient Name Value F1 Patient Name Value Number Provider Name Key Precision Provider Name Key Recall Provider Name Key F1 Provider Name Key Number Provider Name Value Precision Provider Name Value Recall Provider Name Value F1 Provider Name Value Number Overall Precision Overall Recall Overall F1 Overall Accuracy
0.5109 1.0 691 0.0829 0.6804 0.6906 0.6855 598 0.9469 0.9833 0.9648 599 0.6607 0.6628 0.6617 608 0.9331 0.9362 0.9346 611 0.5872 0.6577 0.6205 558 0.9442 0.9626 0.9533 562 0.7904 0.8159 0.8030 0.9921
0.0554 2.0 1382 0.0391 0.6838 0.6906 0.6872 598 0.9950 0.9983 0.9967 599 0.6546 0.6859 0.6699 608 0.9357 0.9525 0.9440 611 0.7431 0.7724 0.7575 558 0.9231 0.9609 0.9416 562 0.8214 0.8430 0.8321 0.9926
0.0298 3.0 2073 0.0255 0.6922 0.6957 0.6939 598 0.9934 0.9983 0.9958 599 0.6505 0.6859 0.6677 608 0.9560 0.9591 0.9575 611 0.7718 0.7760 0.7739 558 0.9459 0.9644 0.9551 562 0.8332 0.8462 0.8396 0.9931
0.0213 4.0 2764 0.0208 0.6264 0.6756 0.6500 598 0.9934 0.9983 0.9958 599 0.6762 0.6974 0.6866 608 0.9645 0.9787 0.9716 611 0.7334 0.7545 0.7438 558 0.9579 0.9715 0.9647 562 0.8222 0.8459 0.8338 0.9928
0.0177 5.0 3455 0.0185 0.6672 0.6973 0.6819 598 0.9934 0.9983 0.9958 599 0.6856 0.6957 0.6906 608 0.9686 0.9591 0.9638 611 0.7778 0.7778 0.7778 558 0.9444 0.9680 0.9561 562 0.8378 0.8490 0.8434 0.9933
0.0157 6.0 4146 0.0176 0.6846 0.7007 0.6926 598 0.9934 0.9983 0.9958 599 0.6852 0.7089 0.6968 608 0.9581 0.9738 0.9659 611 0.7875 0.7903 0.7889 558 0.9786 0.9751 0.9768 562 0.8460 0.8575 0.8517 0.9936
0.0144 7.0 4837 0.0176 0.6228 0.6656 0.6435 598 0.9950 0.9983 0.9967 599 0.6667 0.6974 0.6817 608 0.9677 0.9804 0.9740 611 0.7718 0.7760 0.7739 558 0.9658 0.9555 0.9606 562 0.8275 0.8453 0.8363 0.9931
0.0134 8.0 5528 0.0172 0.6551 0.6923 0.6732 598 0.9933 0.9967 0.995 599 0.6900 0.7138 0.7017 608 0.9741 0.9853 0.9797 611 0.7715 0.7867 0.7791 558 0.9713 0.9644 0.9679 562 0.8395 0.8563 0.8478 0.9937
0.0125 9.0 6219 0.0167 0.6571 0.6890 0.6727 598 0.9934 0.9983 0.9958 599 0.7 0.7138 0.7068 608 0.9676 0.9771 0.9723 611 0.7786 0.7814 0.7800 558 0.9715 0.9698 0.9706 562 0.8425 0.8546 0.8485 0.9936
0.0118 10.0 6910 0.0170 0.6683 0.6839 0.6760 598 0.9934 0.9983 0.9958 599 0.6949 0.7155 0.7050 608 0.9804 0.9820 0.9812 611 0.7583 0.7760 0.7671 558 0.9751 0.9751 0.9751 562 0.8432 0.8549 0.8490 0.9936

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.0.0+cu118
  • Datasets 2.2.2
  • Tokenizers 0.13.3
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.