|
--- |
|
library_name: transformers |
|
base_model: microsoft/trocr-base-str |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: microsoft/trocr-base-str |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# microsoft/trocr-base-str |
|
|
|
This model is a fine-tuned version of [microsoft/trocr-base-str](https://huggingface.co/microsoft/trocr-base-str) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0856 |
|
- Cer: 0.0098 |
|
- Wer: 0.0573 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Cer | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:| |
|
| 1.6623 | 1.0 | 217 | 0.4722 | 0.0574 | 0.2340 | |
|
| 0.4122 | 2.0 | 434 | 0.3248 | 0.0378 | 0.1585 | |
|
| 0.1077 | 3.0 | 651 | 0.0898 | 0.0132 | 0.0722 | |
|
| 0.047 | 4.0 | 868 | 0.0848 | 0.0114 | 0.0614 | |
|
| 0.0304 | 5.0 | 1085 | 0.0836 | 0.0122 | 0.0634 | |
|
| 0.0224 | 6.0 | 1302 | 0.0891 | 0.0104 | 0.0566 | |
|
| 0.0154 | 7.0 | 1519 | 0.0873 | 0.0107 | 0.0587 | |
|
| 0.0137 | 8.0 | 1736 | 0.0852 | 0.0102 | 0.0560 | |
|
| 0.0121 | 9.0 | 1953 | 0.0883 | 0.0107 | 0.0634 | |
|
| 0.0095 | 10.0 | 2170 | 0.0829 | 0.0092 | 0.0526 | |
|
| 0.0068 | 11.0 | 2387 | 0.0851 | 0.0091 | 0.0519 | |
|
| 0.0075 | 12.0 | 2604 | 0.0831 | 0.0102 | 0.0600 | |
|
| 0.0055 | 13.0 | 2821 | 0.0824 | 0.0098 | 0.0580 | |
|
| 0.0048 | 14.0 | 3038 | 0.0821 | 0.0099 | 0.0587 | |
|
| 0.0023 | 15.0 | 3255 | 0.0873 | 0.0096 | 0.0553 | |
|
| 0.0018 | 16.0 | 3472 | 0.0835 | 0.0102 | 0.0593 | |
|
| 0.0016 | 17.0 | 3689 | 0.0888 | 0.0100 | 0.0600 | |
|
| 0.0034 | 18.0 | 3906 | 0.0853 | 0.0094 | 0.0553 | |
|
| 0.001 | 19.0 | 4123 | 0.0857 | 0.0096 | 0.0566 | |
|
| 0.0013 | 20.0 | 4340 | 0.0856 | 0.0098 | 0.0573 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.1+cu121 |
|
- Datasets 2.17.0 |
|
- Tokenizers 0.19.1 |
|
|