Salmamoori's picture
End of training
dabd669 verified
|
raw
history blame
2.42 kB
metadata
license: mit
base_model: microsoft/MiniLM-L12-H384-uncased
tags:
  - Language
  - image-Emotion
  - miniLM
  - PyTorch
  - Trainer
  - SequenceClassification
  - WeightedLoss
  - CrossEntropyLoss
  - F1Score
  - HuggingFaceHub
  - generated_from_trainer
datasets:
  - emotion
metrics:
  - f1
model-index:
  - name: miniLM_finetuned_Emotion_2024_06_15
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: Emotion
          type: emotion
          config: split
          split: validation
          args: split
        metrics:
          - name: F1
            type: f1
            value: 0.9379095011375947

miniLM_finetuned_Emotion_2024_06_15

This model is a fine-tuned version of microsoft/MiniLM-L12-H384-uncased on the Emotion dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1659
  • F1: 0.9379

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1
No log 1.0 250 0.6783 0.8239
No log 2.0 500 0.3368 0.9101
No log 3.0 750 0.2447 0.9346
No log 4.0 1000 0.2044 0.9273
No log 5.0 1250 0.1669 0.9350
No log 6.0 1500 0.1783 0.9386
No log 7.0 1750 0.1973 0.9313
No log 8.0 2000 0.1586 0.9385
No log 9.0 2250 0.1690 0.9352
No log 10.0 2500 0.1659 0.9379

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1