|
--- |
|
{} |
|
--- |
|
|
|
# XGen-7B-8K-Inst |
|
|
|
Official research release for the family of **XGen** models (`7B`) by Salesforce AI Research: |
|
|
|
*Title*: [Long Sequence Modeling with XGen: A 7B LLM Trained on 8K Input Sequence Length](https://blog.salesforceairesearch.com/xgen/) |
|
|
|
*Authors*: [Erik Nijkamp](https://eriknijkamp.com)\*, Tian Xie\*, [Hiroaki Hayashi](https://hiroakih.me/)\*, [Bo Pang](https://scholar.google.com/citations?user=s9fNEVEAAAAJ&hl=en)\*, Congying Xia\*, Chen Xing, Rui Meng, Wojciech Kryscinski, Lifu Tu, Meghana Bhat, Semih Yavuz, Jesse Vig, Lidiya Murakhovs'ka, [Chien-Sheng Wu](https://jasonwu0731.github.io/), [Yingbo Zhou](https://scholar.google.com/citations?user=H_6RQ7oAAAAJ&hl=en), [Shafiq Rayhan Joty](https://raihanjoty.github.io/), [Caiming Xiong](http://cmxiong.com/), Silvio Savarese. |
|
|
|
(* indicates equal contribution). |
|
|
|
## Models |
|
|
|
### Base models |
|
* [XGen-7B-4K-Base](https://huggingface.co/Salesforce/xgen-7b-4k-base): XGen-7B model pre-trained under 4K sequence length. |
|
* License: Apache-2.0 |
|
* [XGen-7B-8K-Base](https://huggingface.co/Salesforce/xgen-7b-8k-base): XGen-7B model pre-trained under 8K sequence length. |
|
* License: Apache-2.0 |
|
|
|
### Instruction-finetuned models |
|
|
|
Supervised finetuned model on public domain instructional data. Released for ***research purpose*** only. |
|
|
|
* [XGen-7B-8K-Inst](https://huggingface.co/Salesforce/xgen-7b-8k-inst) |
|
|
|
## How to run |
|
|
|
The training data for the models are tokenized with OpenAI Tiktoken library. |
|
To use this model, install the package via `pip`: |
|
|
|
```sh |
|
pip install tiktoken |
|
``` |
|
|
|
The models can be used as auto-regressive samplers as follows: |
|
|
|
```python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("Salesforce/xgen-7b-8k-inst", trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained("Salesforce/xgen-7b-8k-inst", torch_dtype=torch.bfloat16) |
|
|
|
header = ( |
|
"A chat between a curious human and an artificial intelligence assistant. " |
|
"The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n" |
|
) |
|
article = "" # insert a document here |
|
prompt = f"### Human: Please summarize the following article.\n\n{article}.\n###" |
|
|
|
inputs = tokenizer(header + prompt, return_tensors="pt") |
|
sample = model.generate(**inputs, do_sample=True, max_new_tokens=2048, top_k=100, eos_token_id=50256) |
|
output = tokenizer.decode(sample[0]) |
|
print(output.strip().replace("Assistant:", "")) |
|
``` |
|
|
|
## Citation |
|
|
|
```bibtex |
|
@misc{XGen, |
|
title={Long Sequence Modeling with XGen: A 7B LLM Trained on 8K Input Sequence Length}, |
|
author={Erik Nijkamp, Tian Xie, Hiroaki Hayashi, Bo Pang, Congying Xia, Chen Xing, Rui Meng, Wojciech Kryscinski, Lifu Tu, Meghana Bhat, Semih Yavuz, Jesse Vig, Lidiya Murakhovs'ka, Chien-Sheng Wu, Yingbo Zhou, Shafiq Rayhan Joty, Caiming Xiong, Silvio Savarese}, |
|
howpublished={Salesforce AI Research Blog}, |
|
year={2023}, |
|
url={https://blog.salesforceairesearch.com/xgen} |
|
} |
|
``` |