Text2Text Generation
Transformers
PyTorch
Safetensors
t5
dialog
text-generation-inference
Inference Endpoints
jianguozhang's picture
Create README.md
b2dd99b
|
raw
history blame
12.5 kB
---
language:
- en
- fr
- ro
- de
- multilingual
widget:
- text: "Continue the dialogue as a task-oriented dialogue system called SYSTEM. The answer of SYSTEM should follow the ACTION provided next while answering the USER's last utterance: \n<USER> Hello, I am looking for a restaurant in Cambridge. I believe it is called Golden Wok. \n<EXTERNAL KNOWLEDGE> ACTION: {'Restaurant-Inform': [['address', '191 Histon Road Chesterton']]}"
example_title: "Dialog Act to Response Generation"
- text: "Translate to German: My name is Arthur"
example_title: "Translation"
- text: "Please answer to the following question. Who is going to be the next Ballon d'or?"
example_title: "Question Answering"
- text: "Please answer the following question. What is the boiling point of Nitrogen?"
example_title: "Scientific knowledge"
- text: "Answer the following yes/no question. Can you write 200 words in a single tweet?"
example_title: "Yes/no question"
- text: "Answer the following yes/no question by reasoning step-by-step. Can you write 200 words in a single tweet?"
example_title: "Reasoning task"
- text: "Q: Is the statement ( `Jianguo is a research scientist at Salesforce AI` and `Jianguo is a student at UIC` ) True or Flase? A: Let's think step by step"
example_title: "Boolean Expressions"
- text: "The square root of x is the cube root of y. What is y to the power of 2, if x = 4?"
example_title: "Math reasoning"
- text: "Premise: At my age you will probably have learnt one lesson. Hypothesis: It's not certain how many lessons you'll learn by your thirties. Does the premise entail the hypothesis?"
example_title: "Premise and hypothesis"
inference:
parameters:
max_length: 256
tags:
- text2text-generation
- dialog
datasets:
- Salesforce/dialogstudio
- flan
license: apache-2.0
---
# Model Card for DialogStudio-T5 base
<img src="https://huggingface.co/datasets/Salesforce/dialogstudio/resolve/main/logo.png"
alt="drawing" width="510"/>
# Table of Contents
0. [TL;DR](#TL;DR)
1. [Model Details](#model-details)
2. [Usage](#usage)
3. [Uses](#uses)
4. [Bias, Risks, and Limitations](#bias-risks-and-limitations)
5. [Training Details](#training-details)
6. [Evaluation](#evaluation)
7. [Environmental Impact](#environmental-impact)
8. [Citation](#citation)
9. [Model Card Authors](#model-card-authors)
# TL;DR
If you already know T5 and Flan-T5, DialogStudio-T5 is better at many things. With the same number of parameters, the models are fine-tuned from a selected amount of dialogues from [DialogStudio](https://github.com/salesforce/DialogStudio) and also 1000 additional tasks.
**Disclaimer**: Content from **this** model card are modified from contents written by the Hugging Face team, and parts of it were copy pasted from the [T5 model card](https://huggingface.co/t5-large) and [Flan-T5 model card](https://huggingface.co/google/flan-t5-large).
**Follow the [DialogStudio](https://github.com/salesforce/DialogStudio) GitHub repository for latest information.**
# Model Details
## Data
We sample a small amount of dialogues from each commercial supported dataset under three categories of [DialogStudio](https://huggingface.co/datasets/Salesforce/dialogstudio), i.e., KG-Dial, TOD and Open-Domain dialogues. Additionally, we sample at most 150 examples for each non-translation task from [FLAN](https://github.com/google-research/FLAN/tree/main/flan/v2).
Note that this version does not incorporate datasets utilized for training large-scale models (>=7B) like Alpaca, ShareGPT, GPT4ALL, UltraChat from OpenAI's 'GPT-3.5/4', or other datasets such as OASST1 and WizardCoder.
<img src="https://huggingface.co/datasets/Salesforce/dialogstudio/resolve/main/DialogStudio_Stats.jpg"
alt="drawing" width="700"/>
## Model Description
- **Model type:** Language model
- **Language(s) (NLP):** English, Spanish, Japanese, Persian, Hindi, French, Chinese, Bengali, Gujarati, German, Telugu, Italian, Arabic, Polish, Tamil, Marathi, Malayalam, Oriya, Panjabi, Portuguese, Urdu, Galician, Hebrew, Korean, Catalan, Thai, Dutch, Indonesian, Vietnamese, Bulgarian, Filipino, Central Khmer, Lao, Turkish, Russian, Croatian, Swedish, Yoruba, Kurdish, Burmese, Malay, Czech, Finnish, Somali, Tagalog, Swahili, Sinhala, Kannada, Zhuang, Igbo, Xhosa, Romanian, Haitian, Estonian, Slovak, Lithuanian, Greek, Nepali, Assamese, Norwegian
- **License:** Apache 2.0
- **Related Models:** [All DialogStudio-T5 Checkpoints](https://huggingface.co/models?search=dialogstudio-t5)
- **Resources for more information:**
- [Research paper](https://arxiv.org/abs/2307.10172)
- [GitHub Repo](https://github.com/salesforce/DialogStudio)
- **Maximum model length:**:
- Maximum input length: 1200
- Maximum output length: 256
- **Training formats:**
- We process dialogue data into below input format :
- With instruction and external knowledge: ```Instruction: your instruction <USER> user utterance 1 <SYSTEM> system utterance 1 ... <USER> user utterance N <EXTERNAL KNOWLEDGE> your external knowledge```
- Without instruction: ```<USER> user utterance 1 <SYSTEM> system utterance 1 ... <USER> user utterance N <EXTERNAL KNOWLEDGE> your external knowledge```
- Without external knowledge: ```Instruction: your instruction <USER> user utterance 1 <SYSTEM> system utterance 1 ... <USER> user utterance N```
- Without both: ```<USER> user utterance 1 <SYSTEM> system utterance 1 ... <USER> user utterance N```
- Note: output is final the system response; `<USER>`, `<SYSTEM>` and `<EXTERNAL KNOWLEDGE>` are special tokens
- For sampled FLAN data:
- We follow their original data format, i.e., we did not set special tokens to separate in-context learning examples.
- In summary:
- We recommend you use our format and add our special tokens (such as `<USER>` and `<SYSTEM>` ) to get better performance. However, you may not necessary need to exactly follow our format if you do observe random behavios.
- We found that T5 model series such as Flan-t5 and DialogStudio-T5 may generate repetitive tokens during inference. If you find such repetition issues, you can set the `repetition_penalty` in model.generate(), such as 1.5, to mitigate them. Note that `repetition_penalty=1.0` by default.
# Usage
Find below some example scripts on how to use the model in `transformers`:
## Using the Pytorch model
### Running the model on a CPU
<details>
<summary> Click to expand </summary>
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("Salesforce/dialogstudio-t5-base-v1.0")
model = AutoModelForSeq2SeqLM.from_pretrained("Salesforce/dialogstudio-t5-base-v1.0")
input_text = "Answer the following yes/no question by reasoning step-by-step. Can you write 200 words in a single tweet?"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
outputs = model.generate(input_ids, max_new_tokens=256)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
</details>
### Running the model on a GPU
<details>
<summary> Click to expand </summary>
```python
# pip install accelerate
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("Salesforce/dialogstudio-t5-base-v1.0")
model = AutoModelForSeq2SeqLM.from_pretrained("Salesforce/dialogstudio-t5-base-v1.0", device_map="auto")
input_text = "Answer the following yes/no question by reasoning step-by-step. Can you write 200 words in a single tweet?"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(input_ids, max_new_tokens=256)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
</details>
### Running the model on a GPU using different precisions
#### FP16
<details>
<summary> Click to expand </summary>
```python
# pip install accelerate
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("Salesforce/dialogstudio-t5-base-v1.0")
model = AutoModelForSeq2SeqLM.from_pretrained("Salesforce/dialogstudio-t5-base-v1.0", device_map="auto", torch_dtype=torch.float16)
input_text = "Answer the following yes/no question by reasoning step-by-step. Can you write 200 words in a single tweet?"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(input_ids, max_new_tokens=256)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
</details>
#### INT8
<details>
<summary> Click to expand </summary>
```python
# pip install bitsandbytes accelerate
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("Salesforce/dialogstudio-t5-base-v1.0")
model = AutoModelForSeq2SeqLM.from_pretrained("Salesforce/dialogstudio-t5-base-v1.0", device_map="auto", load_in_8bit=True)
input_text = "Answer the following yes/no question by reasoning step-by-step. Can you write 200 words in a single tweet?"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(input_ids, max_new_tokens=256)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
</details>
# Uses
## Direct Use and Downstream Use
<!-- The authors write in [the original paper's model card](https://arxiv.org/pdf/2210.11416.pdf) that: -->
> The primary use is research on language models, including: research on zero-shot NLP tasks and in-context few-shot learning NLP tasks, such as dialogue response generation, reasoning, and question answering; advancing fairness and safety research, and understanding limitations of current large language models
## Out-of-Scope Use
More information needed.
# Bias, Risks, and Limitations
The information below in this section are copied and modified from Flan-T5's models card:
> Language models, including DialogStudio-T5, can potentially be used for language generation in a harmful way, according to Rae et al. (2021). DialogStudio-T5 should not be used directly in any application, without a prior assessment of safety and fairness concerns specific to the application.
## Ethical considerations and risks
> DialogStudio-T5 is fine-tuned on a large corpus of text data that was not filtered for explicit content or assessed for existing biases. As a result the model itself is potentially vulnerable to generating equivalently inappropriate content or replicating inherent biases in the underlying data.
## Known Limitations
> DialogStudio-T5 has not been tested in real world applications.
## Sensitive Use:
> DialogStudio-T5 should not be applied for any unacceptable use cases, e.g., generation of abusive speech.
# Training Details
## Training Data
We sample a small amount of dialogues from each commercial supported dataset under three categories of [DialogStudio](https://huggingface.co/datasets/Salesforce/dialogstudio), i.e., KG-Dial, TOD and Open-Domain dialogues. Additionally, we sample at most 150 examples for each non-translation task from [FLAN](https://github.com/google-research/FLAN/tree/main/flan/v2).
Note that this version does not incorporate datasets utilized for training large-scale models (>=7B) like Alpaca, ShareGPT, GPT4ALL, UltraChat from OpenAI's 'GPT-3.5/4', or other datasets such as OASST1 and WizardCoder.
See above **Training formats:** for details of the training formats.
## Training Procedure
> These models are based on Flan-T5 and are fine-tuned with instructions for better zero-shot and few-shot performance. There is one fine-tuned DialogStudio model per T5 model size.
The model has been trained on 16 A100 GPUs, each with 40G memory, using public [transformer](https://github.com/huggingface/transformers) codebase.
# Evaluation
## Testing Data, Factors & Metrics
The authors evaluated the model on several dialogue tasks and general tasks such as 0-shot/5-shot MMLU and 3-shot BBH.
## Results
For full results for DialogStudio, see the [research paper](https://arxiv.org/abs/2307.10172).
## Environmental Impact
More information needed.
# Citation
**BibTeX:**
```bibtex
@misc{zhang2023dialogstudio,
title={DialogStudio: Towards Richest and Most Diverse Unified Dataset Collection for Conversational AI},
author={Jianguo Zhang and Kun Qian and Zhiwei Liu and Shelby Heinecke and Rui Meng and Ye Liu and Zhou Yu and and Huan Wang and Silvio Savarese and Caiming Xiong},
year={2023},
eprint={2307.10172},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```