distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6464
  • Accuracy: {'accuracy': 0.84}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 0.5728 {'accuracy': 0.824}
0.4384 2.0 500 0.6861 {'accuracy': 0.84}
0.4384 3.0 750 1.1608 {'accuracy': 0.812}
0.1949 4.0 1000 1.0198 {'accuracy': 0.826}
0.1949 5.0 1250 1.1314 {'accuracy': 0.838}
0.0612 6.0 1500 1.3810 {'accuracy': 0.844}
0.0612 7.0 1750 1.6426 {'accuracy': 0.832}
0.0164 8.0 2000 1.6141 {'accuracy': 0.844}
0.0164 9.0 2250 1.6768 {'accuracy': 0.842}
0.0075 10.0 2500 1.6464 {'accuracy': 0.84}

Framework versions

  • PEFT 0.12.0
  • Transformers 4.42.4
  • Pytorch 2.3.1
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for SaiPavanKumarMeruga/distilbert-base-uncased-lora-text-classification

Adapter
(225)
this model