distilbert-ner

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 45 1.5295 0.2627 0.0223 0.0411 0.6639
No log 2.0 90 1.2463 0.3241 0.2831 0.3022 0.6845
No log 3.0 135 1.0915 0.3560 0.4052 0.3790 0.7005
No log 4.0 180 0.9411 0.5225 0.3180 0.3954 0.7428
No log 5.0 225 0.8653 0.4437 0.5304 0.4832 0.7580
No log 6.0 270 0.7936 0.4913 0.5362 0.5128 0.7798
No log 7.0 315 0.7715 0.4974 0.5623 0.5279 0.7840
No log 8.0 360 0.7545 0.5083 0.5601 0.5329 0.7880
No log 9.0 405 0.7464 0.5125 0.5694 0.5395 0.7921
No log 10.0 450 0.7475 0.5070 0.5725 0.5377 0.7903

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
99
Safetensors
Model size
66.4M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for SahuH/distilbert-ner

Finetuned
(7917)
this model