|
--- |
|
language: multilingual |
|
tags: |
|
- text-classification |
|
- pytorch |
|
- nli |
|
- xnli |
|
- de |
|
datasets: |
|
- xnli |
|
|
|
pipeline_tag: zero-shot-classification |
|
|
|
--- |
|
|
|
# German Zeroshot |
|
|
|
## Model Description |
|
|
|
This model has [GBERT Large](https://huggingface.co/deepset/gbert-large) as base model and fine-tuned it on xnli de dataset |
|
|
|
#### Zero-shot classification pipeline |
|
|
|
```python |
|
from transformers import pipeline |
|
classifier = pipeline("zero-shot-classification", |
|
model="Sahajtomar/German_Zeroshot") |
|
|
|
# we will classify the Russian translation of, "Who are you voting for in 2020?" |
|
sequence = "Letzte Woche gab es einen Selbstmord in einer nahe gelegenen kolonie" |
|
candidate_labels = ["Verbrechen","Tragödie","Stehlen"] |
|
hypothesis_template = "In deisem geht es um {}." ## Since monolingual model,its sensitive to hypothesis template. This can be experimented |
|
|
|
classifier(sequence, candidate_labels, hypothesis_template=hypothesis_template) |
|
# {'labels': ['politics', 'Europe', 'public health'], |
|
# 'scores': [0.9048484563827515, 0.05722189322113991, 0.03792969882488251], |
|
# 'sequence': 'За кого вы голосуете в 2020 году?'} |
|
``` |
|
|
|
The default hypothesis template is the English, `This text is {}`. If you are working strictly within one language, it |
|
may be worthwhile to translate this to the language you are working with: |
|
|
|
```python |
|
sequence_to_classify = "¿A quién vas a votar en 2020?" |
|
candidate_labels = ["Europa", "salud pública", "política"] |
|
hypothesis_template = "Este ejemplo es {}." |
|
classifier(sequence_to_classify, candidate_labels, hypothesis_template=hypothesis_template) |
|
"""{'labels': ['Tragödie', 'Verbrechen', 'Stehlen'], |
|
'scores': [0.8328856854438782, 0.10494536352157593, 0.06316883927583696], |
|
'sequence': 'Letzte Woche gab es einen Selbstmord in einer nahe gelegenen Kolonie'}""" |
|
``` |